

LEARNING OBJECTIVES

- Upon seminar completion, you will be able to:
 - Understand the need for communication throughout the design process
 - Identify best design practices for products to be galvanized based on ASTM specification guidelines
 - Avoid fabrication and design issues that subtract from long-term corrosion protection

WHY SPECIFY HOT-DIP GALVANIZING

- Corrosion Protection
- Durability
- Longevity
- Availability/Versatility
- Aesthetics
- Sustainability
 - ▶ Environmental
 - Economical

SURFACE PREPARATION

- Thorough cleaning is necessary as zinc will only react with clean steel
- Three cleaning solutions:
 - Degreasing removes dirt, oils, organic residue
 - Pickling removes mill scale and oxides
 - Fluxing mild cleaning, protective layer
- Unclean areas will not grow zinc coating

GALVANIZING

- Steel immersed in bath (kettle)of molten zinc (~830 F)
- Bath chemistry >98% pure zinc
 Up to 2% additives (Al, Bi, Ni)
- Molten zinc reacts with iron in steel to form metallurgicallybonded coating
- Reaction is complete when steel reaches bath temperature

ASTM STANDARDS

- Requirements for coating thickness, finish/appearance, and adherence
- ▶ ASTM A123
 - General iron/steel products
- ▶ ASTM A153
 - Fasteners/small parts centrifuged or spun
- ► ASTM A767
 - Reinforcing steel (rebar)
 - Also has bend diameters

OTHER GALVANIZING STANDARDS

- Canadian StandardsOrganization
 - ▶ CSA G164
- International Organization for Standardization (ISO)
 - ▶ ISO1461
- American Association of State Highway Transportation Officials (AASHTO)
 - ▶ AASHTO M111
 - ▶ AASHTO M232

SUPPORTING SPECS (PRE-GALV)

▶ ASTM A143

- Safeguarding against embrittlement
- ▶ ASTM A384
 - Minimizing warpage/distortion
- ► ASTM A385
 - Practice for high-quality HDG coatings
- ▶ ASTM A1068
 - Life-cycle cost analysis for steel corrosion protection

SUPPORTING SPECS (POST-GALV)

- ► ASTM A780
 - Touch-up and repair of galvanized products
- ▶ ASTM D6386
 - Surface preparation for painting over HDG
- ▶ ASTM D7803
 - Surface Preparation for powder coating over HDG

COMMUNICATION IS KEY

- Steel Chemistry & Surface Condition
- Size & Shape
- Process Temperature/Heat
- Venting & Drainage
- Welding
- Threaded Parts/Connections
- Post Galvanizing Design/Use

DESIGN DATA DETAIL SOFTWARE

- SDS/2 has incorporated galvanizing details
 - Automated vent/drain locations and sizes
 - Designate at set up or as each member is designed
 - Checks for kettle size fit, dissimilar materials, vents/drains, welds
 - ▶ Defaults to AISC Standards
- ▶ Visit **sds2.com** for details

SUITABLE MATERIALS FOR GALVANIZING

- Ferrous Metals
 - Carbon steel
 - Weathering steel
 - Stainless steel
- ▶ Fasteners
 - Centrifuged to remove excess zinc
- Castings
 - Special cleaning/design is important

STEEL CHEMISTRY

- Recommended Steel
 Chemistry for
 Hot-Dip Galvanizing (ASTM A385)
 - Silicon <0.04% or 0.15%-0.22%
 - Phosphorous < 0.04%
 </p>

SURFACE CONDITIONS

 Varying surface conditions lead to varied appearance

- Old/New Steel
- Combining materials
 - ▶ Different chemistries
 - Rusted/pitted steels vs. new/machine surfaces
- Fabrication methods
- Process needs/time

SIZE & SHAPE

- Variety of sizes/shapes
 - Average kettle is 40 feet
 - ▶ Many kettles 50-60 feet
 - Weight can also be an important factor
- Overhead hoists/cranes move the steel
 - Chains, wires, racking systems, or perforated baskets hold materials
 - Lifting points where possible
- Design large structures in modules

or sub-units and connect afterlyani galvanizing ze It!

PROCESS TEMPERATURE & MECHANICAL PROPERTIES

▶ HDG Temperature does not change

Steel chemistry

▶ Tensile strength

Yield strength

Bend properties

Impact properties

Micro-structure

HDG process does not "weaken" high strength steel

COLD-WORKING

ze It!

- Severe cold-working increases possibility of strain-age embrittlement
 - Heat of HDG can accelerate the affects
- Keep bend radii as large as possible before HDG
 - ▶ At least 3x the section thickness
- Refer to ASTM A143 for recommendations and stressrelieving procedures

COPE CUTS

- Flame cut copes often have residual stress and rough surface
 - ▶ Can lead to cracking after HDG
- Minimizing risk for cope cracking:
 - ▶ Thermal treatment
 - Weld bead applied directly to, and extending out one inch from the cut
- Cracks can be repaired after galvanizing by welding, followed by an application of zinc per one of the methods described in ASTM A780

HEATING/COOLING RATES

- Heat of process can relieve stresses
 - Can lead to distortion and warping of parts/assemblies
- Common design causes of Warpage/Distortion
 - ▶ Inherent stresses within steel
 - Cold working or cold rolled steel
 - Welding before hot-dip galvanizing
 - Asymmetrical design
 - ▶ Thin/thick material within assembly
 - Progressive dipping
 - Poor drainage/venting and lifting points
- Process causes (for galvanizer to control)
 - ▶ Long immersion time

BEST PRACTICES TO AVOID WARPAGE/DISTORTION

- Communication between galvanizer, designer, & fabricator early in design process
 - ▶ Follow guidelines in ASTM A384
 - ▶ Sheets/plates ≥1/4 in
 - Checkered/diamond plate
 - Thermal treatment after cold working
- Symmetrical design
- Equal/near equal thickness in assemblies
- Overlapping joints
- > Progressive dinning

VENTING & DRAINAGE

 Cleaning solutions & zinc need to flow into, through, out of articles for effective galvanizing

 Vent/drain holes allow air to escape, immersion, and draining of excess zinc

 Extremely important for personnel safety and to avoid damage to fabrication/equipment

Reference ASTM A385 for recommended venting/drainage designs and sizing

GUSSET & BASE PLATES

HOLLOW & ENCLOSED STRUCTURES

WELDING BEFORE GALVANIZING

- Two items influence the quality/appearance
- Cleanliness of the weld
 - Flux/slag must be removed by fabricator
- Weld Rod Chemistry
 - As similar to the steel chemistry

OVERLAPPING SURFACES

- Zinc viscosity prevents it from entering gaps less than 3/32"
 - Cleaning solutions penetrate smaller gaps – may weep out
- Stitch-Welding with 3/32" gap
- Complete Seal Welding
 - Large overlap requires venting to prevent moisture trapping
 - Reference ASTM A385 for venting requirements

VENTING OVERLAPPING SURFACES

Overlapped Area in ² (cm ²)	Steels ≤½ in. (12.75 mm) in Thickness		Steels >½ in (12.75 mm) in Thickness	
	Vent Holes	Unwelded Area	Vent Holes	Unwelded Areas
under 16 (103)	None	None	None	None
16 (103) to >64 (413)	One 3/8in (1 cm)	1 in (2.5 cm)	None	None
64 (413) to >400 (2580)	One ½in (1/25 cm)	2 in (5.1 cm)	One ½ in (1.25 cm)	2 in (5.1 cm)
>400 (2580) each 400 (2580)	One ¾ in (1.91 cm)	4 in (10.2 cm)	One ¾ in (1.91 cm)	4 in (10.2 cm)

THREADED & MOVING PARTS

- Threaded Parts
 - Zinc coating pickup makes threads thicker – affecting fit-up between male/female threads
 - Overtapping of Galvanized Nuts –
 ASTM A563
 - Zinc on male thread will protect both components
 - ▶ Clearance Holes
 - ▶ Bearing connections no oversizing
 - ▶ Slip-critical connections + 1/8 inch to nominal bolt diameter
 - Maximum oversizing AISC LRFD Manual
- Moving Parts
 - Must accommodate for zinc coating thickness

MASKING

Treating an area of the steel to prevent coating growth

▶ Threads

Areas to be welded

Studs

▶ Not 100% Effective

Add significant labor in application and removal

MARKING

- Temporary
 - Metal/Barcode Tags
 - Markers
- Permanent
 - Weld Beads
 - Stamping
 - Deep Stencil
 - Refer to ASTM A385 for recommended sizing
- Oil-based markings should be avoided

HOT-DIP GALVANIZED AESS

A123 quality often not enough to meet aesthetic requirements

 Additional detailing required before & after HDG

▶ Learn A123 requirements

Explicitly state responsibility for additional detailing

 Pre-job meeting with all parties GC/Fabricator/Galvanizer critical to success

Use Custom Category Matrix

Galvani
Optimizes cost

Ze It! Minimizes detailing

INSPECTING GALVANIZED STEEL

Inspections performed/scrutinized on all HDG

Coating thickness

Finish & Appearance

Referee Tests (only when a question arises)

Adherence – stout knife test

Run knife point along surface smoothly

No gouging/whittling

Not on edges/corners

Embrittlement (ASTM A1/13)

COATING THICKNESS

- Checked by magnetic thickness gauge
 - ▶ ASTM E376 for guidance
- ASTM A123, A153, A767 have minimum coating thickness requirements (no max)
 - Based on type of material (category) and thickness of the steel
 - Sampling requirements for inspection based on lot size & surface area of the parts
 - Information on maximum allowable area for touch-up and repair (in-plant)

FINISH & APPEARANCE

- Visual inspection with naked eye
- Some surface imperfections are allowed according to ASTM specifications
 - If they do not affect corrosion protection
 - OR intended use of product
 - Specification notes different appearances (shiny, matte, mottled) are not cause for rejection (not interfere with protection)
- Touch-up/repair is done

according to ACTM A790

APPEARANCE & WEATHERING

Photo 03/28/03

TOUCH-UP & REPAIR

▶ ASTM A780 identifies acceptable forms

- Zinc-based solder
- Zinc-rich paint
- Zinc-spray (metallizing)
- Main ASTM standards A123, A153, A767 give restrictions on size
 - Size limits only for in-plant repair
- Frouch Up & Repair video series GalygybuTube

ze It! □ galvanizeit.org/repair

PROPER STORAGE & HANDLING

- Promote free flowing air around parts
 - During storage & shipping
 - Wood spacers to avoid nesting
 - Avoid collection of moisture
 - Stack at angles
 - Keep away from vegetation/dew
 - May want/need to cover during shipping
- ▶ Refer to AGA Publication *Wet Storage Stain* for additional into & ani cleaning recommendations

 ze It!

DESIGNING FOR HOT-DIP GALVANIZING

- Communication amongst all parties is key
- ▶ Following best design practices from the specifications leads to best quality coatings
- Inspection is simple, focusing mostly on coating appearance and thickness

Duplex systems are another area for communication and urface preparation is most *ze It!*

AGA RESOURCES

- Galvanizer Locator/GalvaSource
 - galvanizeit.org/galvanizers
- Technical Assistance/Expertise
 - galvanizeit.org
 - aga@galvanizeit.org; 720.554.0900
- ▶ Dr. Galv KnowledgeBase
 - galvanizeit.org/knowledgebase
- AGA Project Gallery
 - galvanizeit.org/project-gallery
- Galvanizing Insights quarterly newsletter

Galyani Technical Library ze It!

