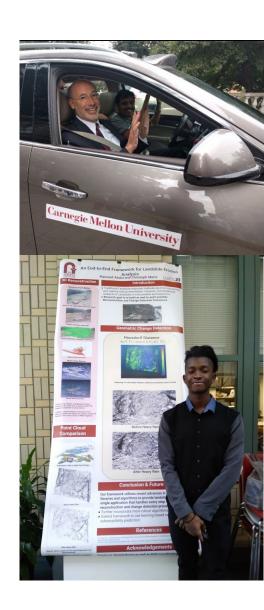


Stan Caldwell Executive Director

Traffic 21 A transportation research institute of Carnegie Mellon University

Mobility21


A USDOT NATIONAL UNIVERSITY TRANSPORTATION CENTER

Carnegie Mellon University

Trends in Information and Communications Technology

- Sensors
- Data Analytics (real time and predictive)
- Cyber Physical Systems
- Internet of Things
- Edge Computing
- 5G and Advanced Wireless

Technologies Disrupting Transportation

- Automation
- Connectivity
- Shared Use
- Electrification
- Novel Modes; Drones, Hyperloop, etc.

Traffic21's approach is...

- •<u>R</u>esearch
- •<u>D</u>evelopment
- •<u>D</u>eployment through partnerships

Over 100 Deployment Partners

How Did Pittsburgh and Pennsylvania Evolve as a Smart Transportation Test Beds and Build Industry Clusters?

Carnegie Mellon University 30 Years of Self-Driving Car Research

1984

- The Terregator's top speed was a few centimeters per second; it could avoid obstacles.
- NavLab launched. Its goal: apply computer vision, sensors and high-speed processors to create vehicles that drive themselves.

1986

Humans or computers controlled NavLab1, a Chevy van. Top speed: 20 mph.

1990

NavLab 2, a US Army HMMWV, wrangled rough terrain at 6 mph. Highway speed: 70 mph.

1995

NavLab 5, a Pontiac Trans Sport, traveled from Pittsburgh to San Diego in the "No Hands Across America Tour."

W 2 3 a a 2 C 0 0 0

2000

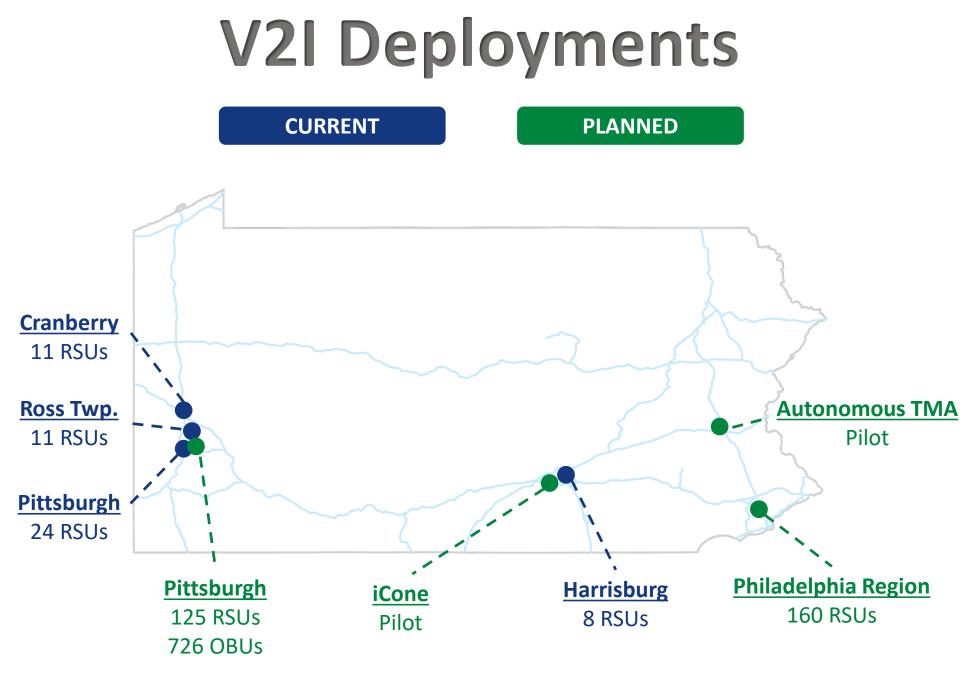
NavLab 11, a Jeep, was equipped with Virtual Valet.

2005

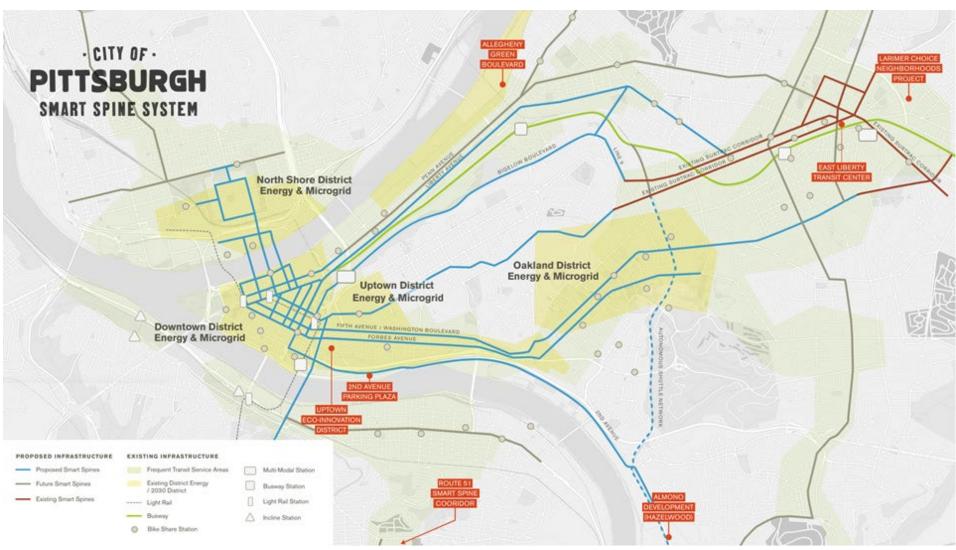
Sandstorm and Highlander placed 2nd and 3rd in the DARPA Grand Challenge.

2007

Carnegie Mellon's "Boss" won the DARPA Grand Urban Challenge by outmaneuvering other vehicles along the 55-mile course.


2014

Carnegie Mellon's **14th self-driving vehicle** is a Cadillac SRX that:


- avoids pedestrians and cyclists
- takes ramps and merges
- recognizes and obeys traffic lights
- looks like other Cadillac SRXs

www.engineering.cmu.edu

50 intersections today 150 more in the next 3 years

Connected and Autonomous Vehicles

Connectivity

• Includes all types of communication with vehicles and infrastructure (Wi-Fi, DSRC, Cellular, etc.)

Connected Vehicle

Communicates with nearby vehicles and infrastructure

Connected and Autonomous Vehicles

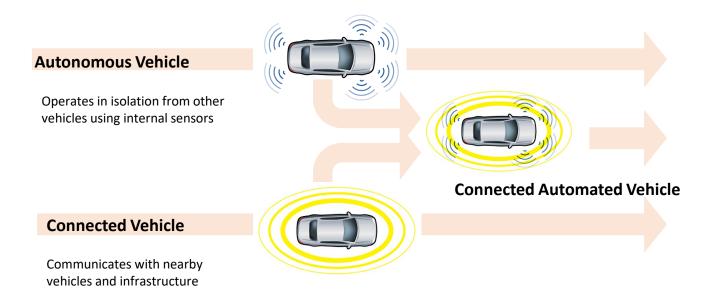
Connectivity

• Includes all types of communication with vehicles and infrastructure (Wi-Fi, DSRC, Cellular, etc.)

Autonomous Vehicle

Operates in isolation from other vehicles using internal sensors

Connected Vehicle


Communicates with nearby vehicles and infrastructure

Connected and Autonomous Vehicles

Connectivity

• Includes all types of communication with vehicles and infrastructure (Wi-Fi, DSRC, Cellular, etc.)

Pittsburgh Demonstration 9-4-14

33 miles along Route 19 in multi-lane, dense traffic with lights and two interstate highways

Connected and Autonomous Vehicles 2040 Vision

Proposed PennDOT Actions

2014 - 2020

2014-2016	2021 - 2030	
Thorough evaluation of all existing and planned	Collaboration with local	2031 - 2040
capacity/LOS enhancement and ITS related investments.	and state educational institutions to enhance workforce training.	• Provisions for a new license class
Collaboration with private sector to convert data into	5	for those wishing
information for sending to cloud.	Update of testing criteria	to drive their
Prioritization of safety and mobility applications.	for level 3 automation.	manual cars.
Identification and prioritization of key locations for	Design of driver licensing	Dedicating some
	training for emergency	highway lanes to
DSRC and roadside equipment deployment.	situations, system	autonomous
• Funding allocation for DSRC and roadside units.	malfunctions, regulations	vehicle use.
2015: FHWA Guidance to V2I Deployment	and human interaction levels.	 Reconfiguration and repurposing o
2016-2020	Work with the trucking	the lanes.
 Upgrading signal controllers, equipment and firmware where necessary. 	 industry and State Police to design features tailored to these stakeholders. Deployment expansions – 	 Phasing out the freight infrastructure (e.g over-height
	large scale deployment of	warnings, weigh
• Early small-scale deployment of V2I applications at	equipment and	stations) as new
key locations.	applications.	technologies are

introduced.

Report to the Citizens of Pennsylvania Vehicle Automation in Pennsylvania

February 1, 2018

AV Policy Task Force

- CMU
- U Penn
- Penn State

- Uber
- SAE
- GM
- Global Automakers

PREPARING for the FUTURE

Stay Informed

Understand the Implications

Start Small & Work With Partners

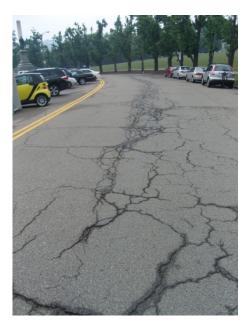
Develop a Plan

Infrastructure Requirements

Line Paint

Retroreflectivity

Asset Databases

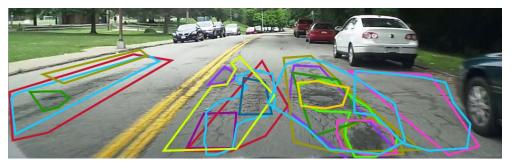

Pavement Condition

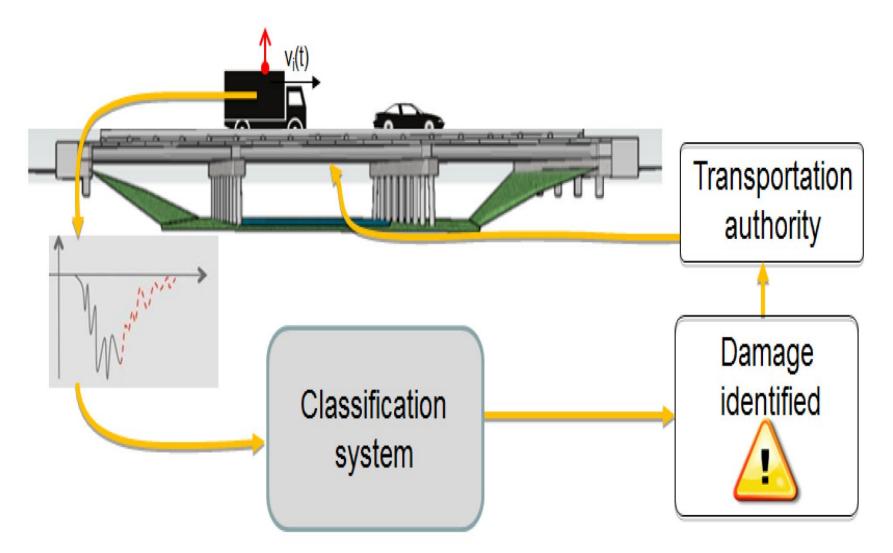
CONSTRU ENTRAI AHEA

Sample Infrastructure Research Projects

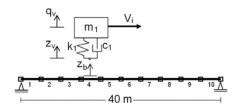
Monitor Road Surface Damage

- Inexpensively
- Accurately
- Continuously


Smartphone Mounted in Car


Convert Images to Data

Indirect Structural Health Monitoring

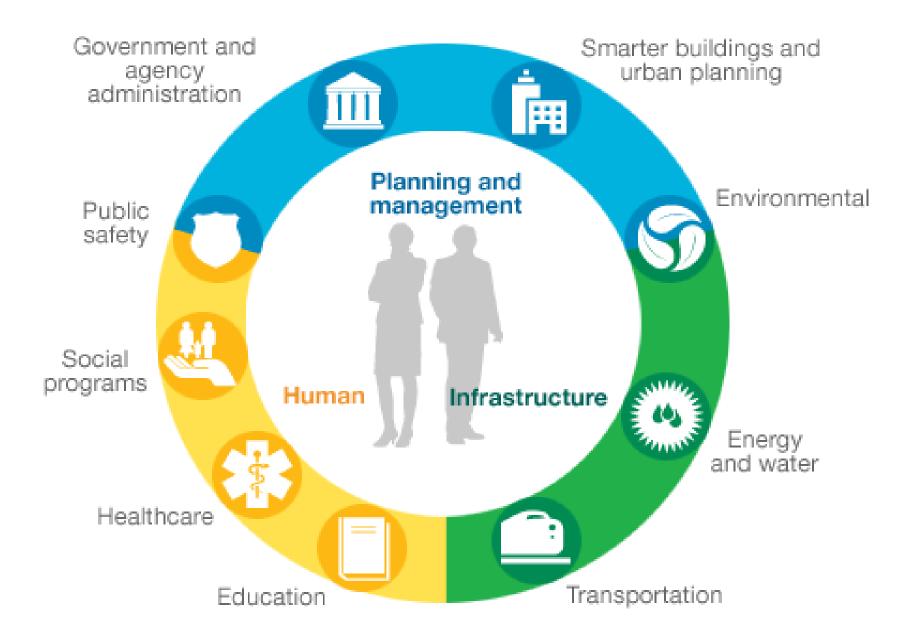

Research process

Field implementation

Field experiment

Laboratory model

Numerical model



Autonomous Aerial Mapping and Inspection for Infrastructure

Metro21 Smart City Institute at CMU

30 cities, 30 universities, 100 projects

METROLAB NETWORK

Connecting Smart Cities, States and Regions

Michael Baker INTERNATIONAL We Make a Difference MDOT Ontario Wisconsin TOR **Smart Belt Coalition** Michigan Port Huron 590 (Flint) **MDOT** New York 69 MCity Detroit 94 (Hillsdale) Ohio Department of **Transportation** CHI Pennsylvania Toledo Cleveland T Pocone Racewa **OHIO** TURNPIKE OTIC Cranberry Signals Pittsburgh Akron NY **PSU** Test T 76 Canton TRC 71 RTC azelwood Illinois CAR TPHL New pennsylvania 70 Columbus ersey Indiana Ohio BAI PENNA / West Virginia DC Delàware TURN PIKE

Smart Belt Coalition (SBC)

A Regional Connected and Automated Vehicle Collaborative

Child Department of Transportation Contraction Contrac

- High-profile, high-impact, and longdistance connected and automated vehicle network
- Multi-jurisdictions
- Four distinct seasons
- Urban and rural roadways
- Support the testing and deployment of connected and automated vehicles
- Cooperative deployments
- University research
- Leverage opportunities for Federal grants

Questions and Discussion

StanCaldwell@cmu.edu

mobility21.cmu.edu/