
FHWA's Demonstration Project for Enhanced Durability Through Increased Density

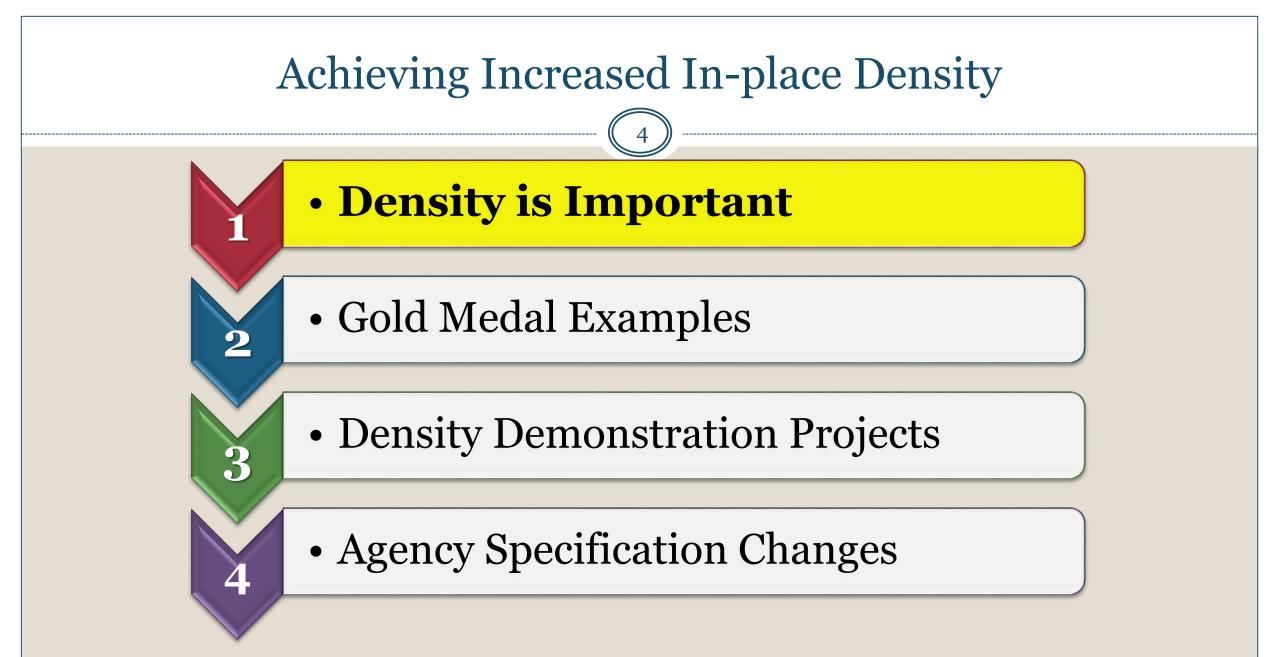
Courtesy Asphalt Institute

TIM ASCHENBRENER, P.E. SENIOR ASPHALT PAVEMENT ENGINEER

PAVEMENT MATERIALS TEAM

OFFICE OF PRECONSTRUCTION, CONSTRUCTION AND PAVEMENTS

FHWA


2

• FHWA does not endorse any one particular entity and that any entity's name or mention of any proprietary product does not indicate FHWA endorsement and is merely shared for information exchange purposes only.

Abbreviations & Acronyms

- AAD = absolute average deviation
- Avg. = average
- AVR = air void reduction
- $\Delta = delta = change$
- DP = demonstration project
- G_{mm} = maximum specific gravity of mixture
- Int. = interstate
- L.F. = linear foot
- LJS = longitudinal joint sealant
- NCAT = National Center for Asphalt Technology

- NMAS = nominal maximum aggregate size
- PWL = percent within limits
- SHA = state highway administration
- Std. Dev. = standard deviation
- t/NMAS = thickness to NMAS
- VMA = percent voids in the mineral aggregate
- WMA = warm mix asphalt

Reasons for Obtaining Density

Cracking

- To improve fatigue cracking resistance
- To improve thermal cracking resistance

Rutting

- To minimize/prevent further consolidation
- To provide shear strength and resistance to rutting

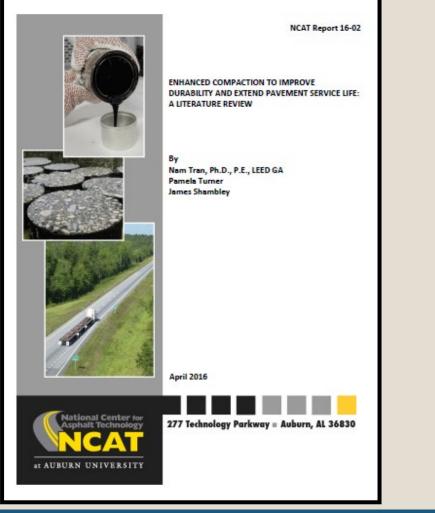
Moisture Damage

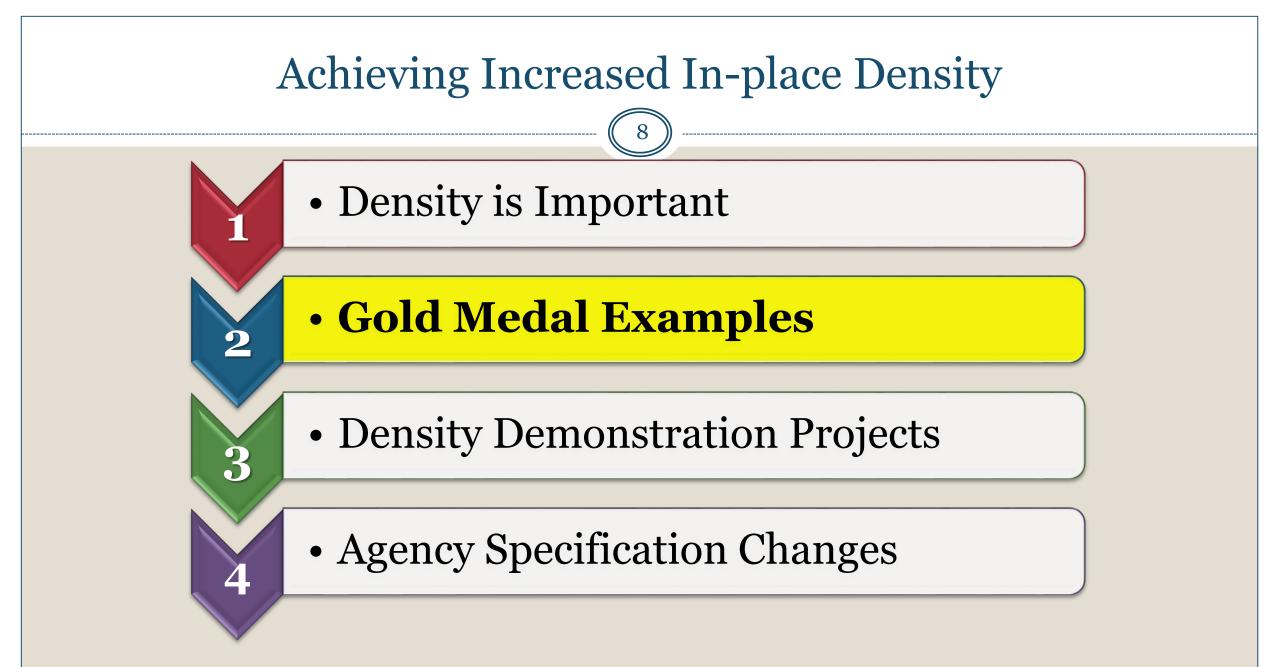
• To ensure the mixture is waterproof (impermeable)

Aging

• To minimize oxidation of the asphalt binder

Density is important, but not a cure-all




FHWA photo

National Center for Asphalt Technology (NCAT) Report 16-02 (2016) (Funded by FHWA)

"A **1% decrease in air voids** was estimated to:

- **improve fatigue** performance by 8.2 and 43.8%
- **improve the rutting** resistance by 7.3 to 66.3%
- **extend the service life** by conservatively 10%"

Some "Gold Medal" Density (% G_{mm}) Specifications Purpose

- Identify density (% $\rm G_{mm}$) specifications that are success stories.
- Considering the Olympics, these success stories are considered "gold medal" examples.

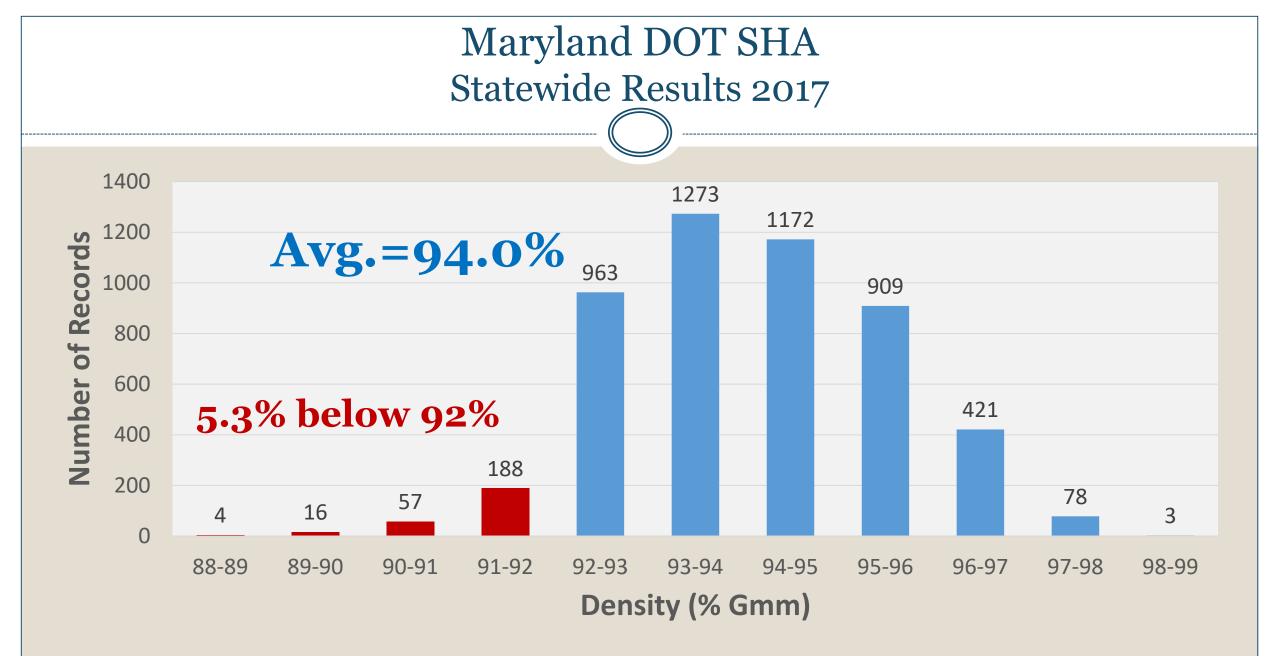
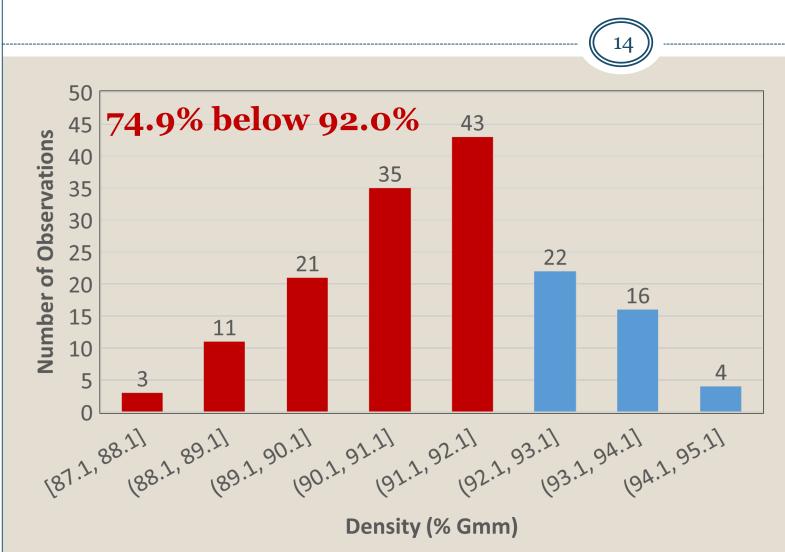


Image Pixabay

Note: There are likely more. Contact me if you think you have one.

Some "Gold Medal" Density (%G_{mm}) Specifications


- Alaska DOT&PF
- Indiana DOT
- Maine DOT
- Maryland DOT SHA
- Michigan DOT
- Missouri DOT
- Montana DOT
- New Jersey DOT
- New York State DOT
- Pennsylvania DOT
- Puerto Rico HTA
- Tennessee DOT

Density (%Gmm)

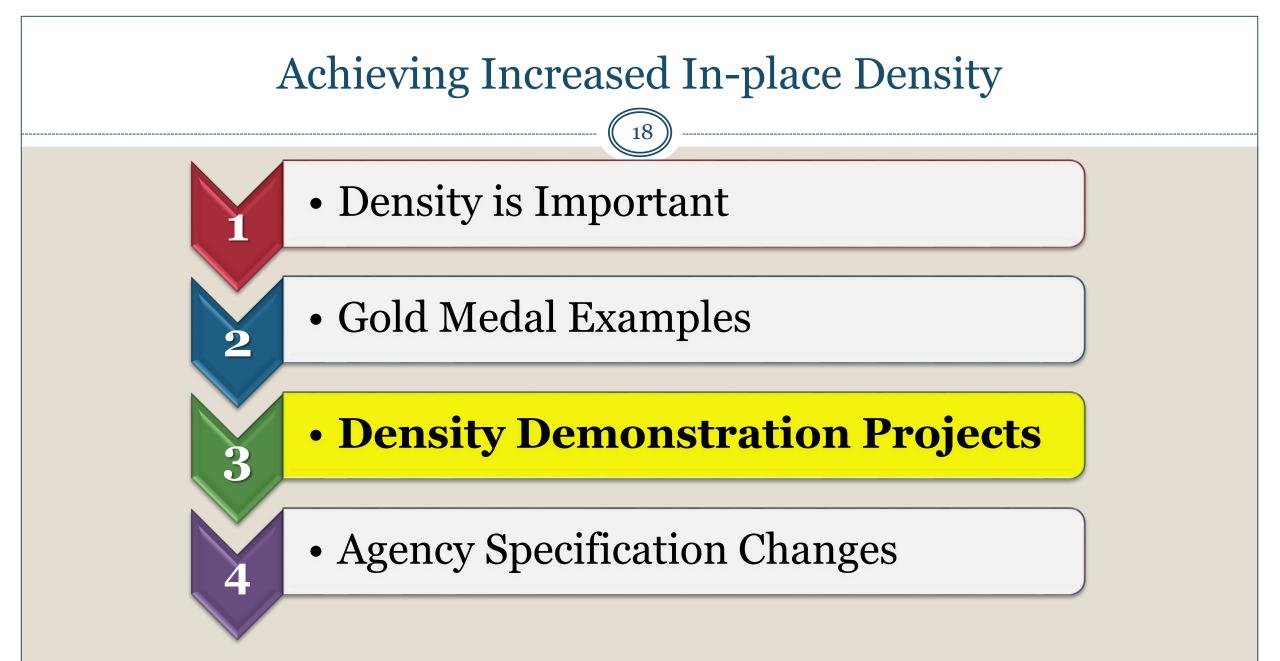
A Project Example

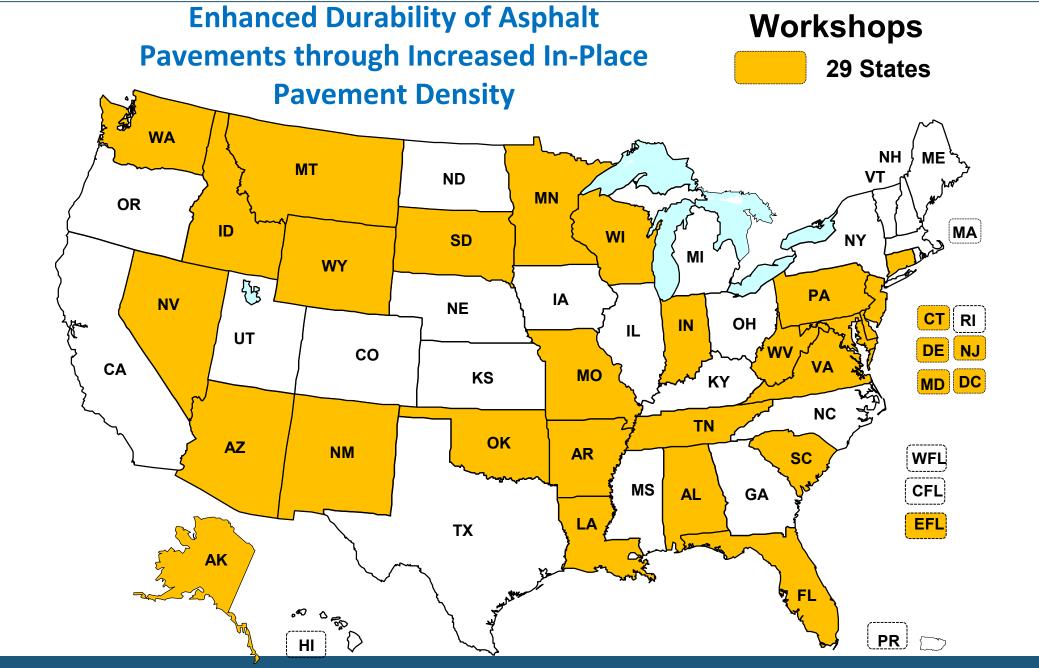
FHWA photo After 1 Year

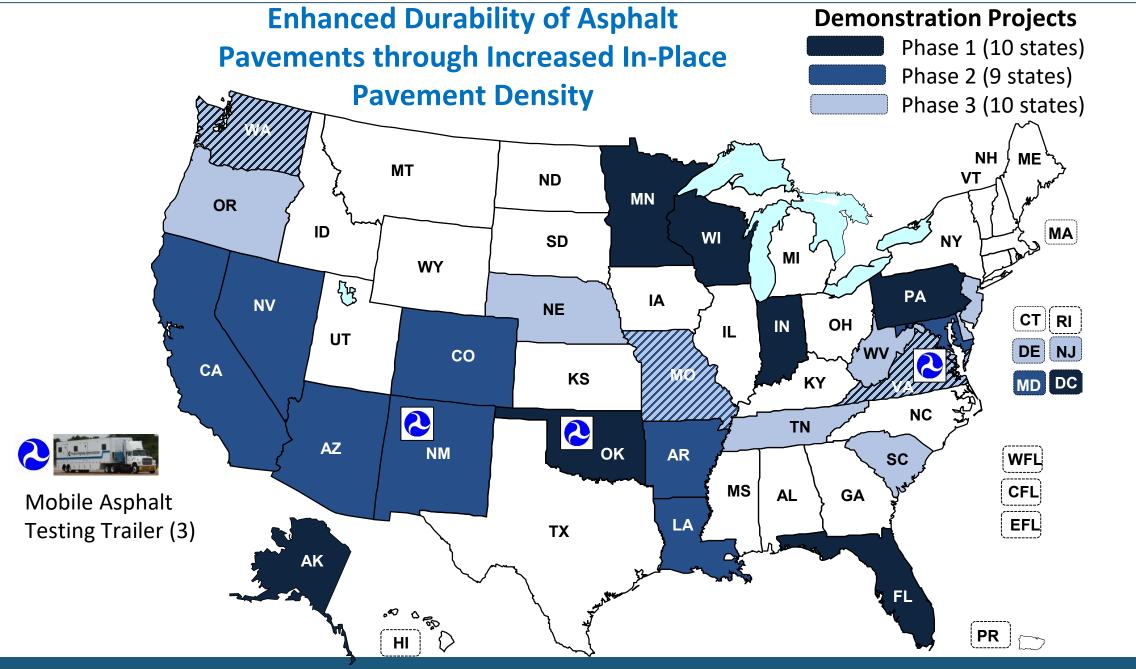
"Gold Medal" Density (%G_{mm}) Specifications Specification / Criteria / Results

	MD	МТ	TN
Type of Specification	Lot Avg. & Ind. Sublot	Lot Avg. & Range	Lot Avg.
Limits (% G _{mm})	92.0 to 97.0	93.0 to 100.0	92.0 to 97.0
Incentive for Only Density	5.0%	8.0% (AC sep.)	2.0%
Max. Incent. (% G _{mm})	94.0	94.0 to 95.0	94.0
Avg. (% G _{mm})	94.0	94.3	93.9
Std. Dev. of Lots	1.03	N/A	N/A
< 92% G _{mm}	5.3%	6.6%	11.0%

"Gold Medal" Density (%G_{mm}) Specifications Specification / Criteria / Results


	AK	IN	ME	MI	NJ	MO	NY	PA	PRHTA
Type of Specification	PWL	PWL	PWL	PWL	PD	PWL	PWL	PWL	PWL
Limits (% G _{mm})	93.0 to 100.0	93.0 to 100.0	92.5 to 97.5	92.5 to 100.0	92.0 to 98.0	92.0 to 97.0	92.0 to 97.0	92.0 to 98.0	92.0 to 99.0
Incentive for Only Density	5.0%	1.75%	2.5%	2.0%	4.0%	1.25%	5.0%	2.0%	2.5%
Max. Incent. (% G _{mm})	≈96.0		≈93.5	≈94.5		≈94.5	≈94.0	≈94.0	≈94.0
Avg. (% G _{mm})	94.9	93.9	94.5	94.4	94.9	93.7	94.2	94.4	94.6
Std. Dev. of Lots	1.76		1.20	1.03			1.01	1.46	
< 92% G _{mm}	5.6%	8.4%	5.8%	5.5%	5.4%	5.0%	5.0%	3.1%	3.6%


Gold Medal Density (% G_{mm}) Specifications Specification/Criteria/Results



Longitudinal Joint

	AK	IN	ME	MI	MT	NY	PA	TN
Type of Specificatio n	Lot Avg.	Method	PWL	Lot Avg.	Lot Avg.	Under Development	PWL	Lot Avg.
Limits (% G _{mm})	>91.0	Long. Joint	>91.0	>90.5	>91.0 >92.0 for incentive		>90.0	>91.0
Incentive for Only Joint Density	\$1.50 per L.F. (≈6.25%)	Sealant (LJS) and fog seal	2.0%	\$1.00 per L.F. (≈4.0%)	\$4.50 per L.F.		\$5000 per Lot (≈2.5%)	1.25%

Demonstration Project Status

21

Phase	Year	States	Constructed	State Reports Completed	FHWA Summary Report	Additional Information
1	2016	10	10	10	July 2017	Literature Review
2	2017- 2018	8	8 (2 re-do's)	7	July 2019	Gold Medal Specifications
3	2018- 2019	11	11	10		Contractor Techniques & SHA Changes

Updated: December 1, 2019

Summary Reports

• https://www.fhwa.dot.gov/pavement/asphalt/pubs/hif19052.pdf

https://www.fhwa.dot.gov/pavement/asphalt/density/index.cfm

Phase 1

Phase 2

NCAT Report 17-05 • July 2017

Report Phase 1:

Report Phase 2:

FHWA density website:

- FHWA Report HIF-19-052
- NCAT Report 19-02
- July 2019

FHWA Demonstration Project for Enhanced Durability of Asphalt Pavements through Increased In-place Pavement Density, Phase 2

May 2019

• http://eng.auburn.edu/research/centers/ncat/files/technical-reports/rep17-05.pdf

NCAT Report 17-05 DEMONSTRATION PROJECT FOR ENHANCED DURABILITY **OF ASPHALT PAVEMENTS**

THROUGH INCREASED IN-

PLACE PAVEMENT DENSITY Tim Aschenbrener E. Ray Brown

Nam Tran

July 2017

Technology Parkway = Auburn, AL 368

Number of Experimental Sections					
	Number To Date				
SHAs	26				
Demonstration Projects	29				
Control Sections	35				
Test Sections	86				
Experimental Sections	121				

Each demonstration project had an average of 4.2 experimental sections.

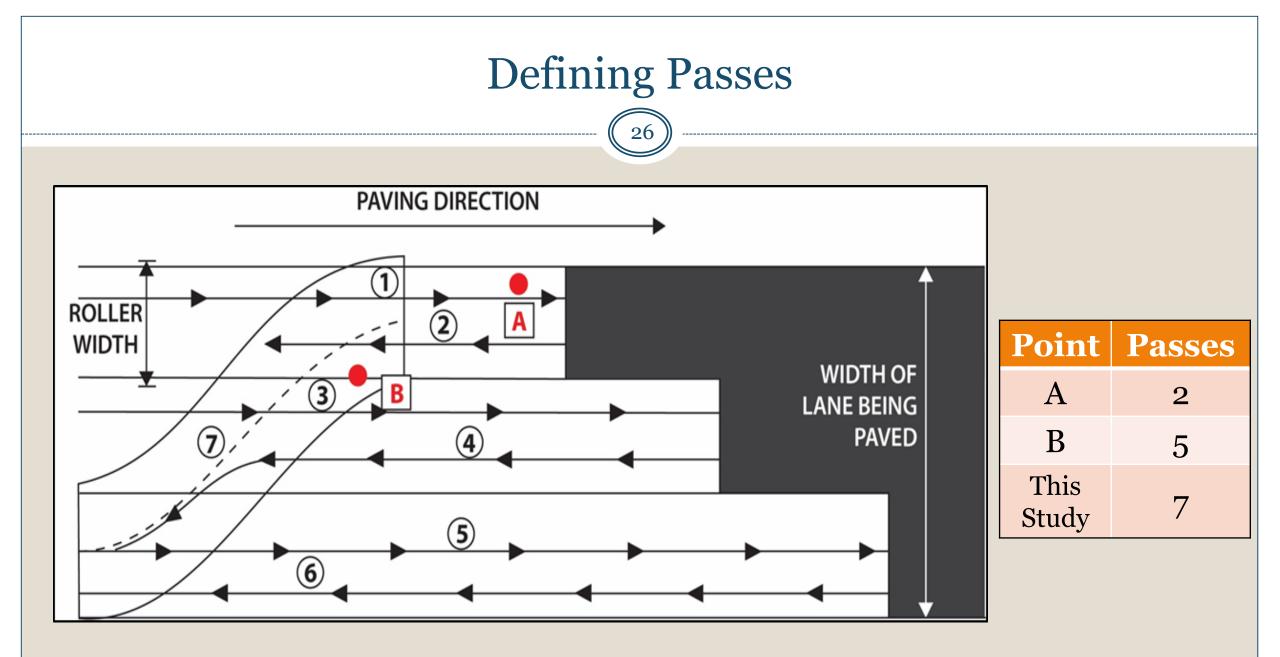
Can We Achieve Increased In-place Density?

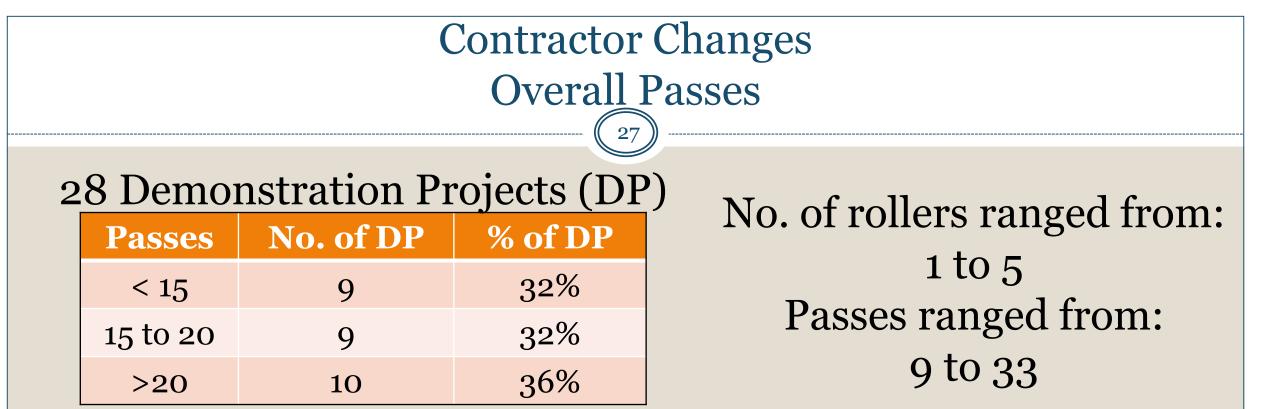
- Test sections had increased density (% Gmm):
- 17 of 28 demonstration projects achieved \geq 1.0% increase
- 22 of 28 demonstration projects achieved ≥ 94.0% Gmm
- 23 of 28 had either/or

Of 26 states, will there be changes?

• 24 of 26 states are changing specifications

What Changes Were Made to Increase Density?


Contractor Changes


• More passes / more rollers / type / location

- "Roll until you meet density requirements"
- ▼ Some were using 1 roller
- × Pneumatic / Oscillation / Combination
- × Echelon
- Agency Changes
 - Adjusting optimum asphalt content
 - Larger t/NMAS
 - Smaller NMAS
 - Innovative materials / techniques

Courtesy Miguel Montoya

18 Demonstration Projects (DP)

Added Passes	Increased Density
(Avg.)	(% G _{mm}) (Avg.)
6.4	1.2%

Contractor Changes Roller Type and Position

28

Roller Type / Position (No. of DP)	Test Sections	Increased Density (% G _{mm}) (Avg.)
Breakdown in Echelon (10)	26	Very effective
Pneumatic (11)	22	Varied
Oscillation (7)	11	Varied
Vibratory Pneumatic (2)	2	+2.2%
Combination Roller (1)	2	+2.0%
Tighter / Consistent Pattern (2)	2	S.D. cut in half

Courtesy Miguel Montoya

3 Photos Courtesy NCAT

Agency Changes NMAS and t/NMAS

29

NMAS (mm)	Demonstration Projects
9.5	8
12.5	20
19.0	6

t/NMAS	Demonstration Projects
< 3.0	2
3.0 to 3.9	6
4.0 to 4.9	20
≥ 5.0	5

4 SHAs had test sections with 9.5 mm NMAS

4 Demonstration Projects 5 Test Sections

	t / NMAS			Increased Density
	Control	Test	Δ	(% G _{mm}) (Avg.)
P2-S5	4.0	3.5	0.5	(>94.0)
P3-S8	2.5	3.0	0.5	0.0
P1-S3	3.0	4.0	1.0	0.0
P1-S4	3.5	4.7	1.2	+1.2
P3-S8	2.5	4.0	1.5	+1.0

Agency Changes Adjusting Optimum Asphalt Content

31

Demonstration Project	Control Section Density (%Gmm)	Asphalt Added	Test Section Density (%Gmm)	Change in Density (%Gmm)
P1-S3	92.9	0.3	93.5	+0.6
P1-S4	93.5	0.3	94.6	+1.1
P1-S5	92.5	0.3	95.2	+2.7
P2-S2	92.2	0.2	94.5	+2.3
PZ-32	95.6	0.2	95.9	+0.3
	95.8	0.2	96.5	+0.7
P2-S4	95.7	0.2	97.1	+1.4
P2-S5	92.0	0.7	95.0	+3.0
	92.0	0.1	93.7	+1.7
P2-S7	92.8	0.2	94.5	+1.7
	92.6	0.2	94.9	+2.3
P3-S2	92.6	0.6	95.8	+3.2
P3-S3	91.3	0.5	90.7	-0.6
P3-S4	TBD			
P3-S6	94.5	0.2	95.1	+0.6
P3-S7	91.9	0.2	91.9	0.0
Average		0.29		+1.4

12 Demonstration Projects 16 Test Sections

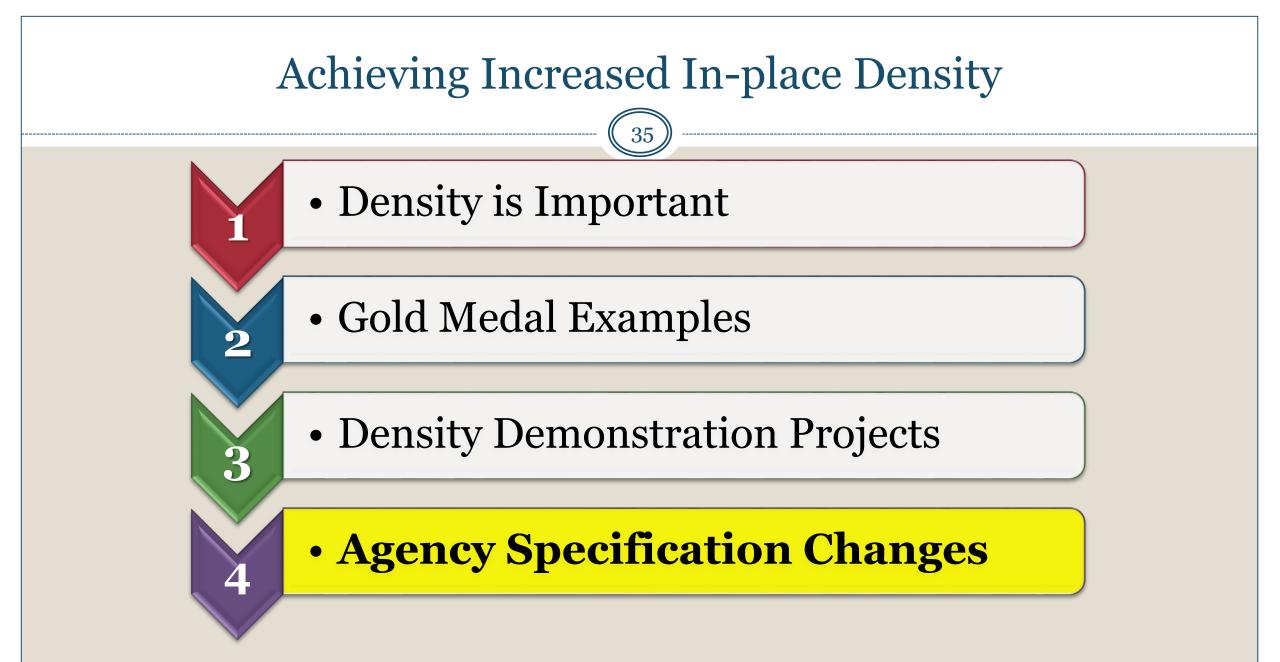
Avg. Increased Asphalt Content = 0.3%

Avg. Increased Density (%G_{mm}) = 1.4%

Keys to Adjusting Optimum Asphalt Content

- Mixture design (e.g., gyrations / air voids / VMA / others)
- Performance testing (e.g., rutting, cracking, moisture damage)
- Acceptance
- In-place density requirement
- These are all related:
 Consider systematic changes

Agency and Contractor Changes New Technologies


Warm Mix Asphalt (5 Demonstration Projects)

• At lower production temperatures

× 2 projects: no change in density

At normal production temperatures

1 project: 3.0% increase in density (92.2 to 95.2%)
1 project: no change in density, but 2 fewer passes per roller
3 projects: no change in density, but already >94%

Agency Specification Changes (1 of 4)

• Primary Density Specification (3)

- Used more often
- Improved secondary density specification
- Quality Measure (5)
 - Mathematical tools that are used to quantify the level of quality of an individual quality characteristic
 - × PWL
 - ▲ Lot average
 - × AAD

• Specification Limit (14)

- Upper limit
- Lower limit

Agency Specification Changes (2 of 4)

Acceptance Plan

• Process for evaluating the acceptability of a lot of material

- Standard Deviation (7)
- Lot / Sublot Size (2)
- Incentive / Disincentive (7)
- Quality Characteristics (1)

Agency Specification Changes (3 of 4)

38

- Quality Control of Aggregates (1)
- t / NMAS (3)
- Longitudinal Joint Density (4)
- Testing Methodologies (2)

Agency Specification Changes (4 of 4)

39

- Mix Design: Increasing Asphalt (14)
- Mix Design: Performance Testing (10)
- New Technology (5)

State 4: Cost / Benefit of Best Practices

- Benefit of 1% Density Increase
 10 percent of \$60 / ton mix = \$\$\$\$\$
- Cost of 1 Percent Density Increase Additional rollers ≤ \$ Additional binder ≤ \$\$ (AVR to 3%)
 WMA Additive ≤ \$ 9.5mm vs. 12.5mm ≈ \$\$

Key Findings

- Level of field compactive effort varies greatly
- No extraordinary field compactive effort needed
 - Specification (quality measure, limits, incentives, etc.)
 - Smaller NMAS
 - Larger t/NMAS
 - Adequate binder content
- All Together:
 - Mixture design with appropriate asphalt content
 - Performance testing
 - Acceptance
 - In-place density

Next Steps

Field experiment – Phase 3 Report
 Final review

• FHWA's best practices communication

- 4 Tech Briefs
- Focused visits in 2020
- Additional workshops (funding dependent)

Thank you

QUESTIONS / COMMENTS:

TIM ASCHENBRENER, P.E.

FHWA

SENIOR ASPHALT PAVEMENT ENGINEER PAVEMENT MATERIALS TEAM OFFICE OF PRECONSTRUCTION, CONSTRUCTION AND PAVEMENTS LAKEWOOD, COLORADO

> (720) 963-3247 TIMOTHY.ASCHENBRENER@DOT.GOV

Image Pixabay