PAVEMENT FRICTION MANAGEMENT PROGRAMS

Network Level Friction Testing – A tool to reduce crashes

Mid-Atlantic Quality Assurance Workshop

Advancing Transportation Through Innovation Edgar de León Izeppi

February 12, 2020

Presentation Outline

- 1) Network Level Friction Testing
- 2) US EU comparison
- 3) E-274 skid tester vs CFME
- 4) Case 1: CFME vs. E-274
- **5)** Case 2: Low macrotexture
- 6) Case 3: HFST location
- 7) Friction Demand
- **8)** Pavement Friction Management

1. Network Level Friction Testing

Coverage: Network Level vs. Hot spots

Crashes: All vs. Wet-only (15%)

Measurements: Full Extent vs. Sample (1%)

Response:

Proactive vs. Reactive

No.	State	Crashes	No.	State	Crashes
1	Texas	428,667	27	Mississippi	74,122
2	California	426,228	28	Minnesota	73,498
3	Georgia	318,531	29	Oklahoma	71,218
_4	New York	314,974	30	Arkansas	62,808
5	New Jersey	<u>301,233</u>	31	Kansas	61,119
6	Ohio	299,040	32	lowa	55,488
7	Michigan	293,403	33	Nevada	53,151
8	Illinois	292,437	34	Utah	51,367
9	Florida	235,803	35	New Mexico	46,213
10	North Carolina	209,695	36	Rhode Island	41,788
11	Indiana	189,983	<u> 3</u> 7	Oregon	41,271
12	Louisiana	155,857	38	West Virginia	39,906
13	Tennessee	155,099	39	Nebraska	34,664
14	Missouri	153,015	40	New Hampshire	33,265
15	Massachusett	136,384	41	Maine	33,118
16	Kentucky	126,237	42	Idaho	22,992
17	Alabama	123,503	43	Montana	21,971
18	Wisconsin	121,736	44	North Dakota	17,686
19	Pennsvlvania	121,298	45	South Dakota	16,994
20	Virginia	116,742	46	DC	1 <u>6.</u> 841
	Washington	110,070	47	Delaware	16,723
	South Carolina	106,864		Wyoming	15,507
	Arizona	106,767		Alaska	12,890
24	Colorado	105,000	50	Vermont	12,640
	Connecticut	103,719	51	Hawaii	10,000
	Maryland	96,391		Total US	6,085,916
					, , -

1. Network Level Friction Testing

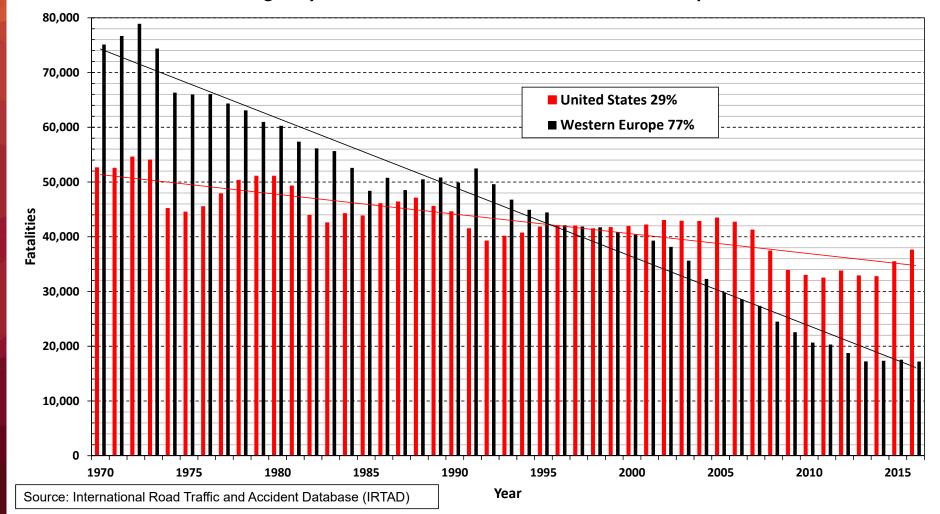
25 states > 100,000 crashes 35 states > 50,000 crashes 43 states > 20,000 crashes

2009 motor vehicle Police-reported traffic crashes by State (Table 5-3) Source: The Economic and Societal Impact of Motor Vehicle Crashes, NHTSA, 2010

1. Network Friction Testing

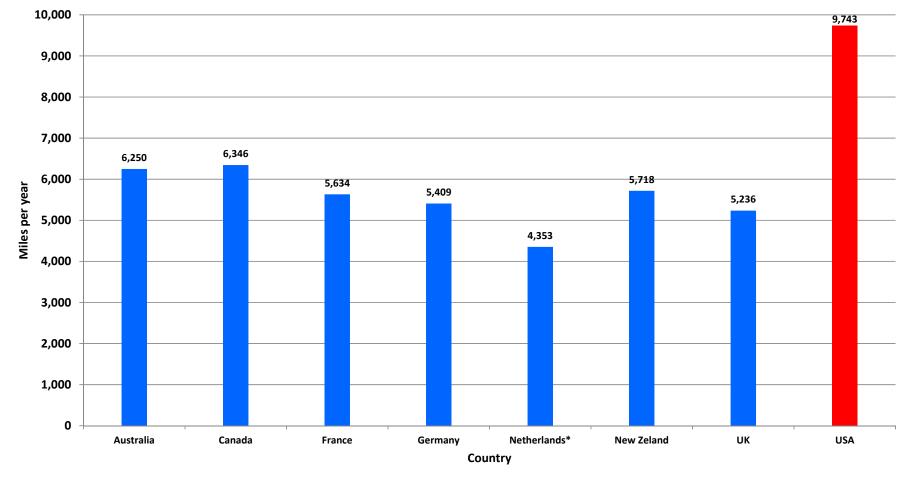
	c	% Miles	% Ln-mi			
	State	owned	owned			
	DE	84.0	85.2			
	DC	90.7	90.9			
	MD	16.0	20.9			
Ż	NJ	6.0	10.1			
	PA	32.9	35.1			
	VA	78.3	78.3			
n	wv	88.6	88.6			

1. Network Friction Testing


		% Miles	% Ln-mi	Fatality			
	State	owned	owned	(2017)	Rank		
	DE	84.0	85.2	119	44		
	DC	90.7	90.9	31	51		
	MD	16.0	20.9	550	26		
	NJ	6.0	10.1	624	23		
	PA	32.9	35.1	1,137	7		
	VA	78.3	78.3	839	17		
'n	WV	88.6	88.6	303	35		

1. Network Friction Testing

	State	% Miles owned	% Ln-mi owned	Fatality (2017)	Rank	Fat Rate 100 MVMT	Rank	
	DE	84.0	85.2	119	44	1.14	27	
1	DC	90.7	90.9	31	51	0.83	46	
	MD	16.0	20.9	550	26	0.92	42	
À	NJ	6.0	10.1	624	23	0.81	47	
	PA	32.9	35.1	1,137	7	1.12	30	
	VA	78.3	78.3	839	17	0.98	39	
n	WV	88.6	88.6	303	35	1.59	4	


1. Network Friction Testing

	State	% Miles owned	% Ln-mi owned	Fatality (2017)	Rank	Fat Rate 100 MVMT	Rank	Comp Cost in \$MM
	DE	84.0	85.2	119	44	1.14	27	131
	DC	90.7	90.9	31	51	0.83	46	34
2	MD	16.0	20.9	550	26	0.92	42	605
À	NJ	6.0	10.1	624	23	0.81	47	686
	PA	32.9	35.1	1,137	7	1.12	30	1,251
	VA	78.3	78.3	839	17	0.98	39	923
n	WV	88.6	88.6	303	35	1.59	4	333

Reduction in Highway Fatalities in the United States & Western Europe 1970-2016

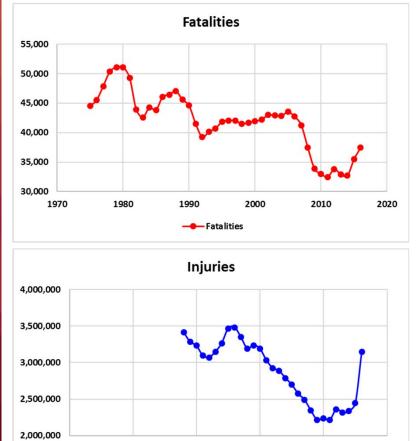
VMT per year/hab. (2010)

Advancing Transportation Through Innovation

Source: International Road Traffic and Accident Database (IRTAD)

VICTOR INSTITUTE

Advancing

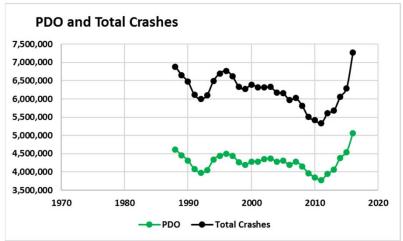

Transportation

Through Innovation

1970

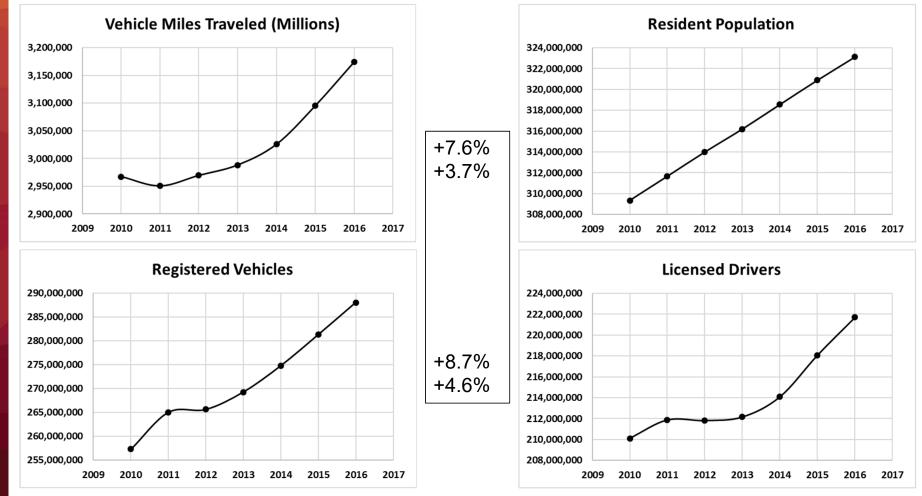
1980

US Safety Performance


1990

----Injuries

2000


2010

2020

From 2011 to 2016:
Fatalities up 16%
Injuries up 42%
PDO crashes up 34%
Total crashes up 36%

Other Statistics (not as high)

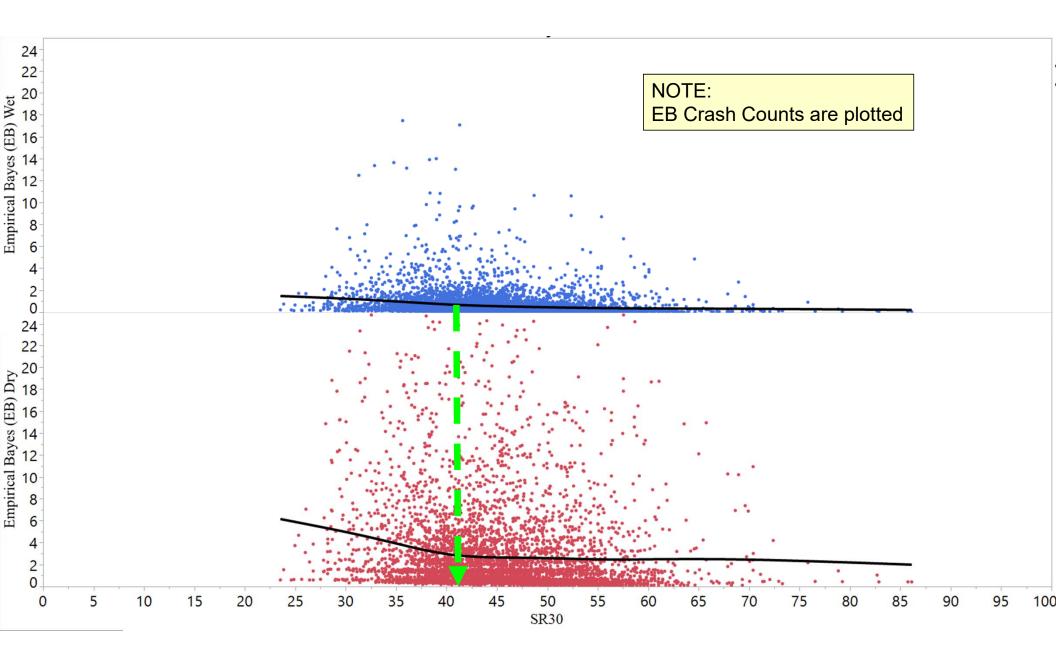
"Principles" of Pavement Friction

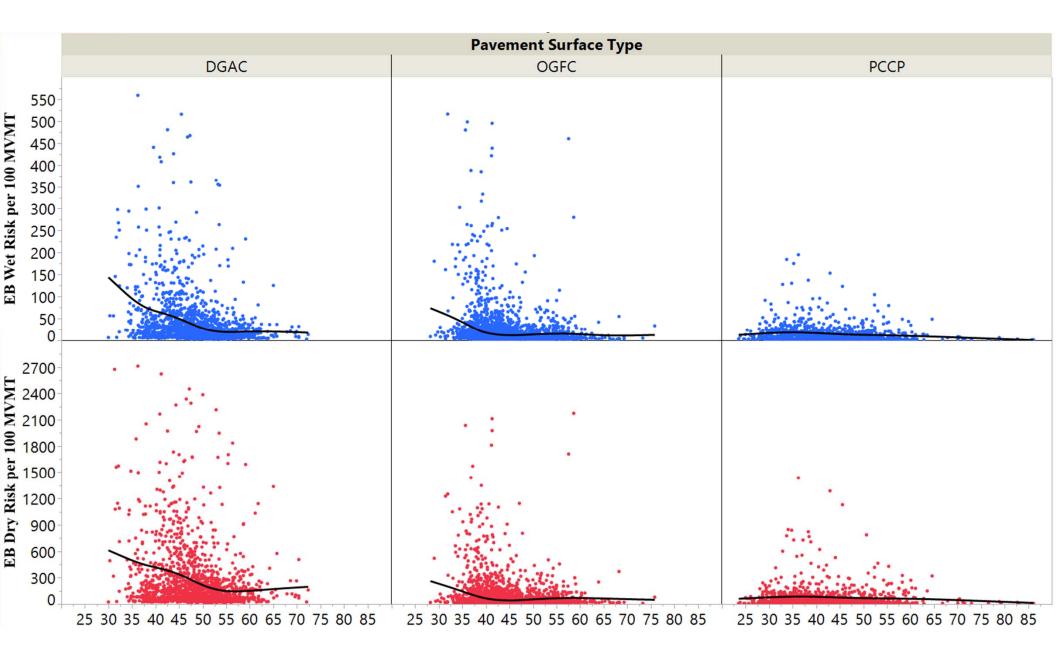
- 1. Only Wet Crashes are related to friction
- 2. You should only investigate friction related sites with a certain % of wet/dry crash ratios
- **3.** Changing the friction (macro/micro) of a pavement will only reduce wet crashes

Kentucky HFST Program Crash Reductions

June 2015

Annual	ALL	RAMPS	CURVES
Wet Avg.	90%	90%	84%
Dry Avg.	77%	78%	80%
Total Avg.	87%	89%	82%


Advancing Transportation Through Innovation After the installation of HFST, the number of **dry weather** reduction in crashes was also very significant.


Myth:

Friction does not improve dry weather crashes skid

3. E-274 vs CFME

49/50 States use the locked-wheel skid trailer E274 to measure friction to try to do Network (multiyear cycle) Wet Accident Reduction Program (WARP). Limitations:

- Locked-wheel cannot do curves, ramps, etc.
- Cannot do continuous (@1.0 miles = 1%)
- Macrotexture possible, not common
- Water ± 2 gal/test @40 mph,
 - 300 gallon tank, 150 tests, 15 miles
 - 600 gallon tank, 300 tests, 30 miles

Advancing Transportation Through Innovation

3. E-274 vs CFME

Actual Low Friction Road Surface

3. E-274 vs CFME

Advancing Transportation Through Innovation

TRANSPORTATION INSTITUTE

3. E-274 vs CFME

SCRIM

✓ Friction ✓Macrotexture ✓IMU + GPS ✓Video (front) √2,200 gallons water tank = 150 miles of continuous data collection per tank

Sideway-Force Coefficient Routine Investigation Machine

SCRIM

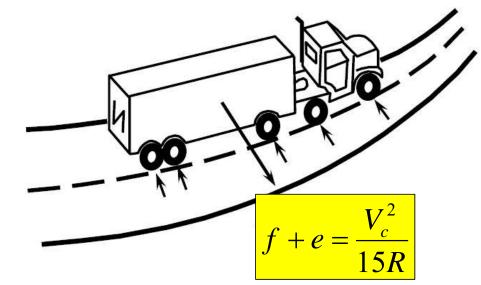
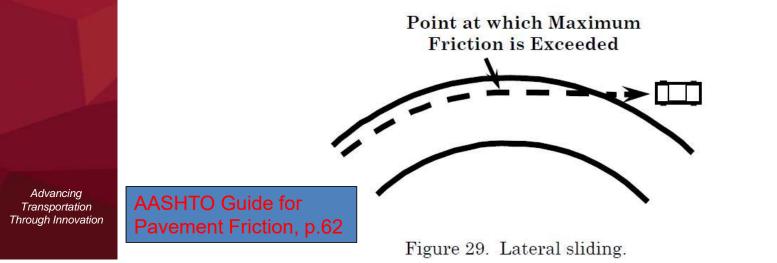
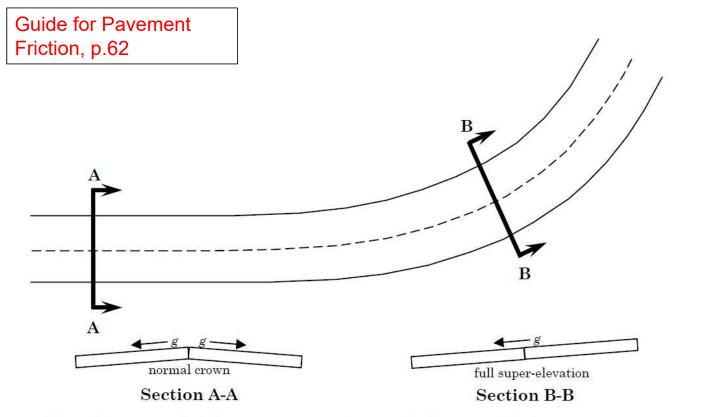
Friction

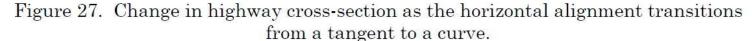
Dynamic vertical load system
Dynamic water flow control
20° skew angle (34% slip speed)
Operating speed of 15 – 55 mph

Macrotexture
 –64 kHz laser system

- •GPS coordinates
- Geometrics
- -Vertical grade
- -Cross-slope
- -Horizontal curvature

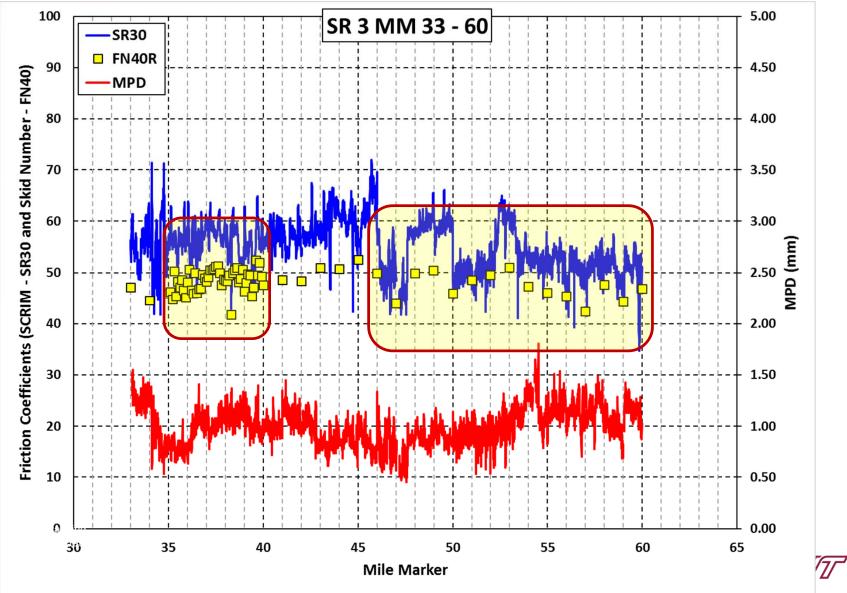
Advancing Transportation Through

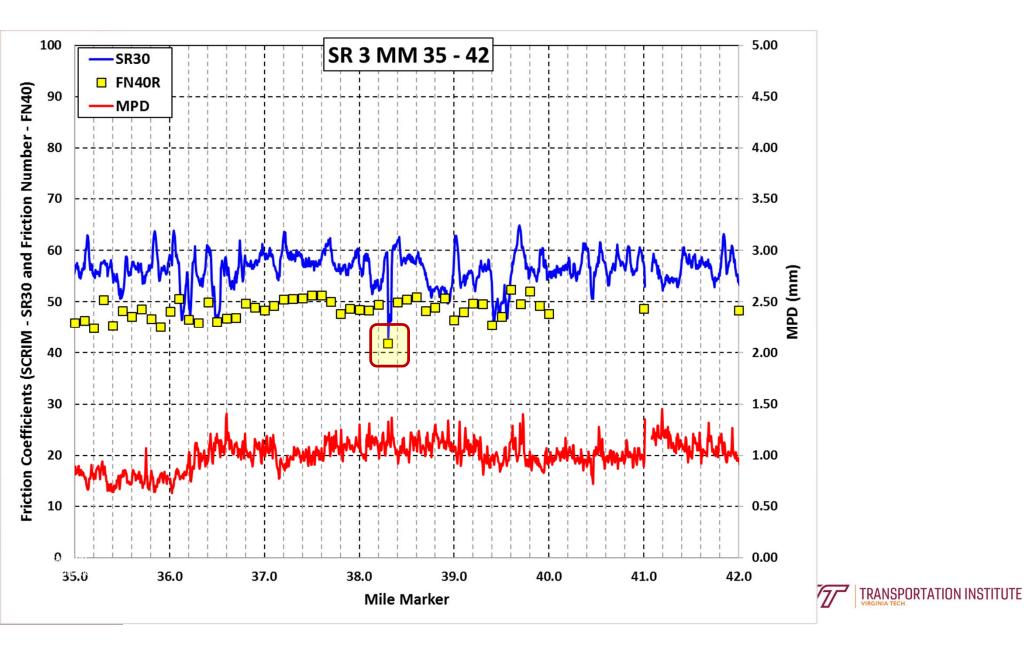

Figure 28. Lateral forces that act on a vehicle as it travels along a curve.

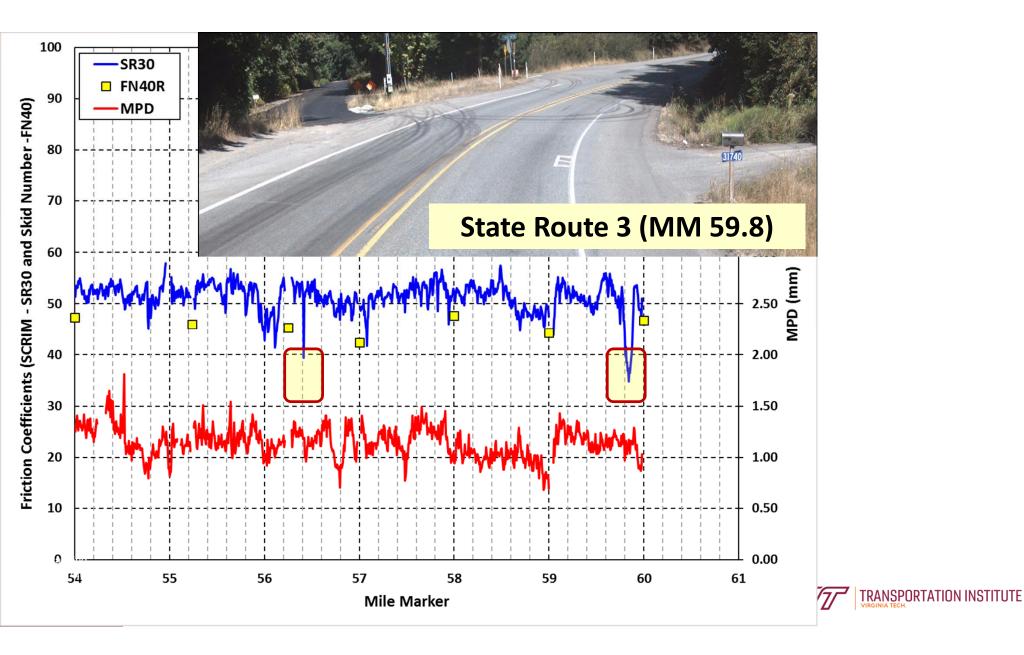
ANSPORTATION INSTITUTE

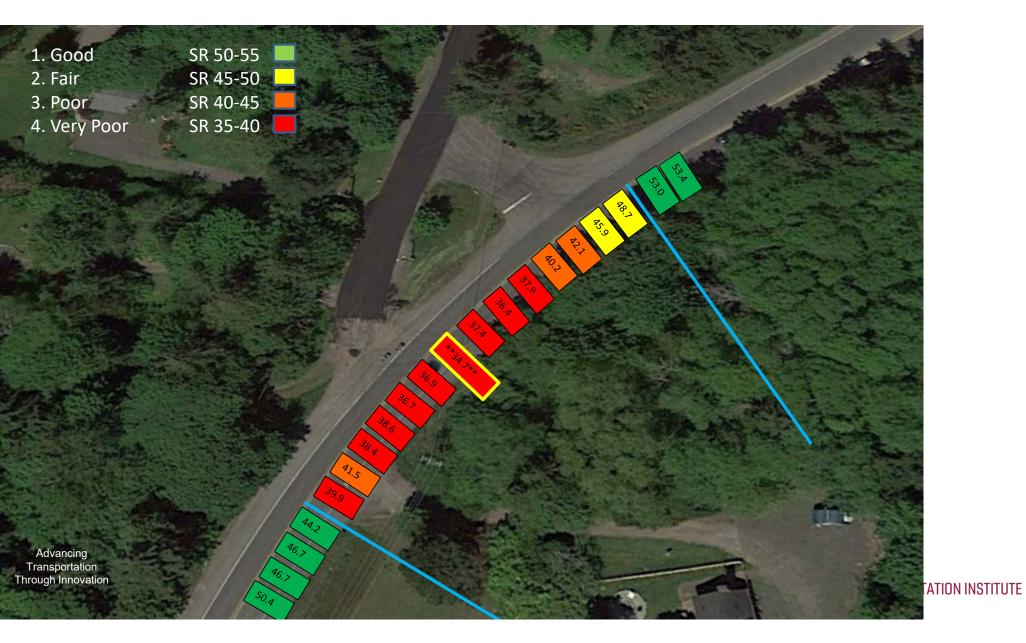
Changes in cross-section in curves

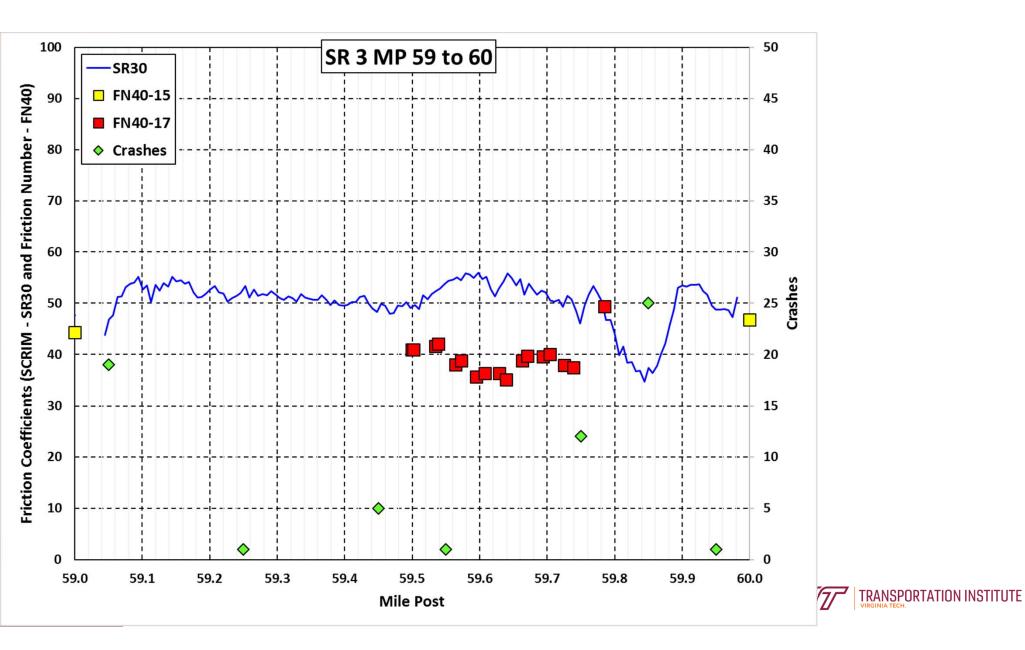

TATION INSTITUTE

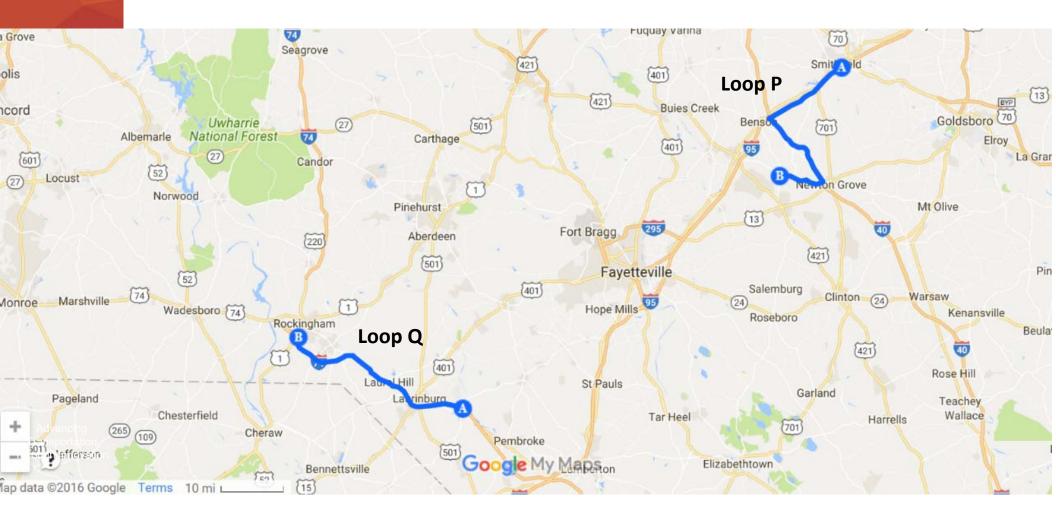
4. Importance of Continuous Measurements


State Route 3 (MM 59.8)

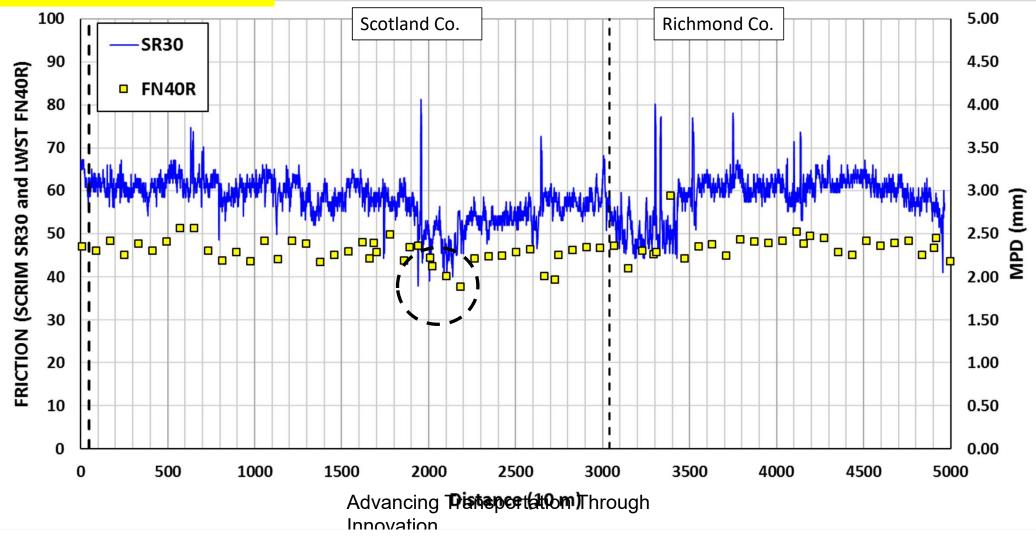

- Comparison CFME and texture data collection with 1.0 mile friction
- ✓Experimentation of LWST at 0.1 mile

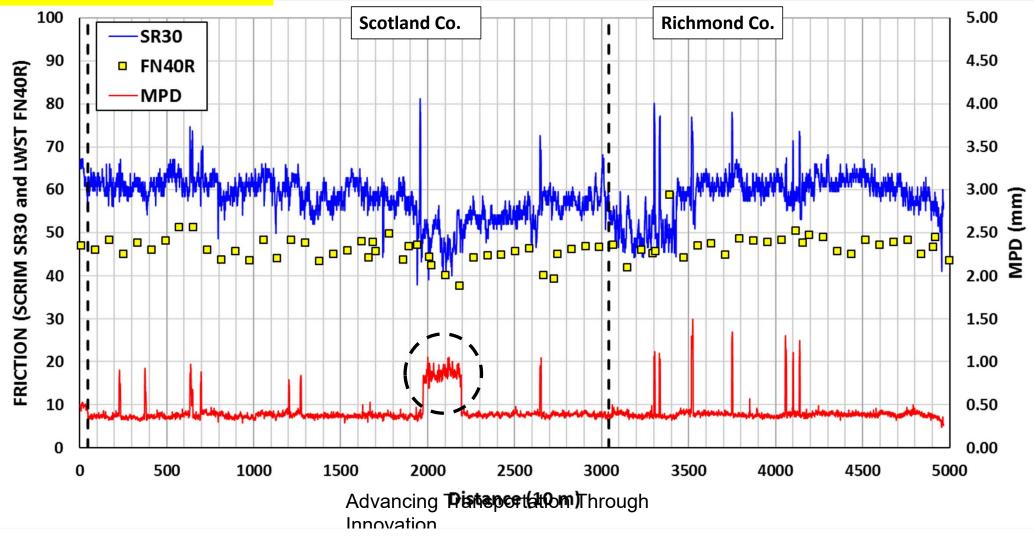


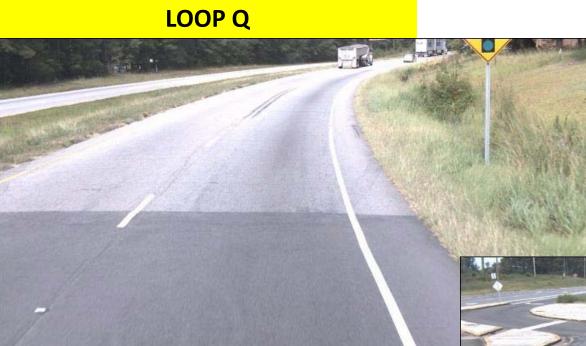




5. CASE 2 – Low Macrotexture


Interstate Loop QFriction and Texture


5. Case 2 – Low Macrotexture



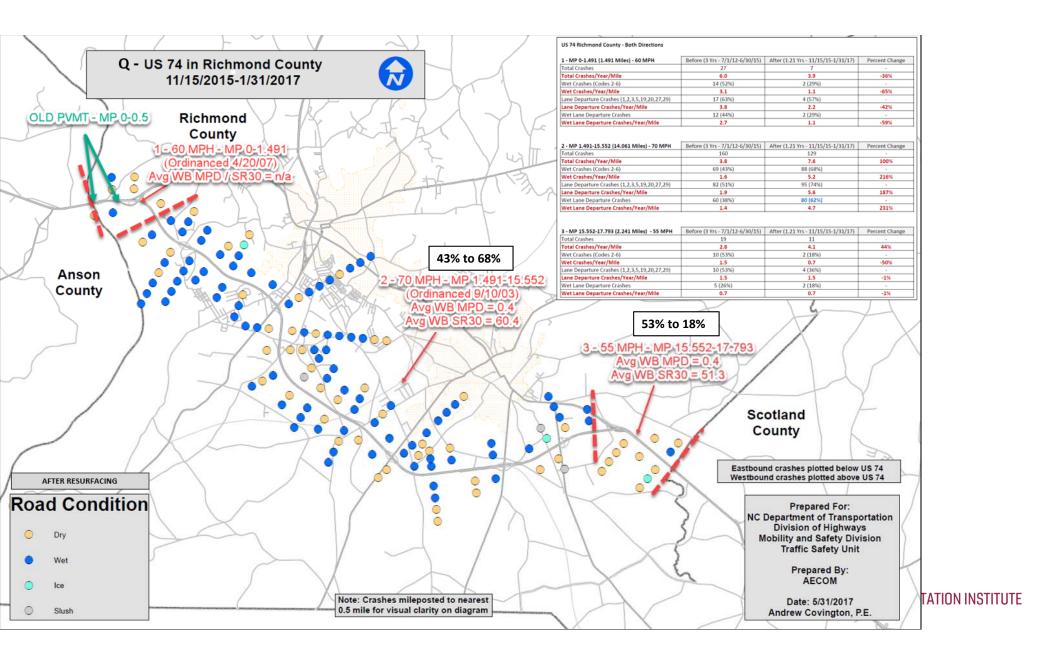
LOOP Q

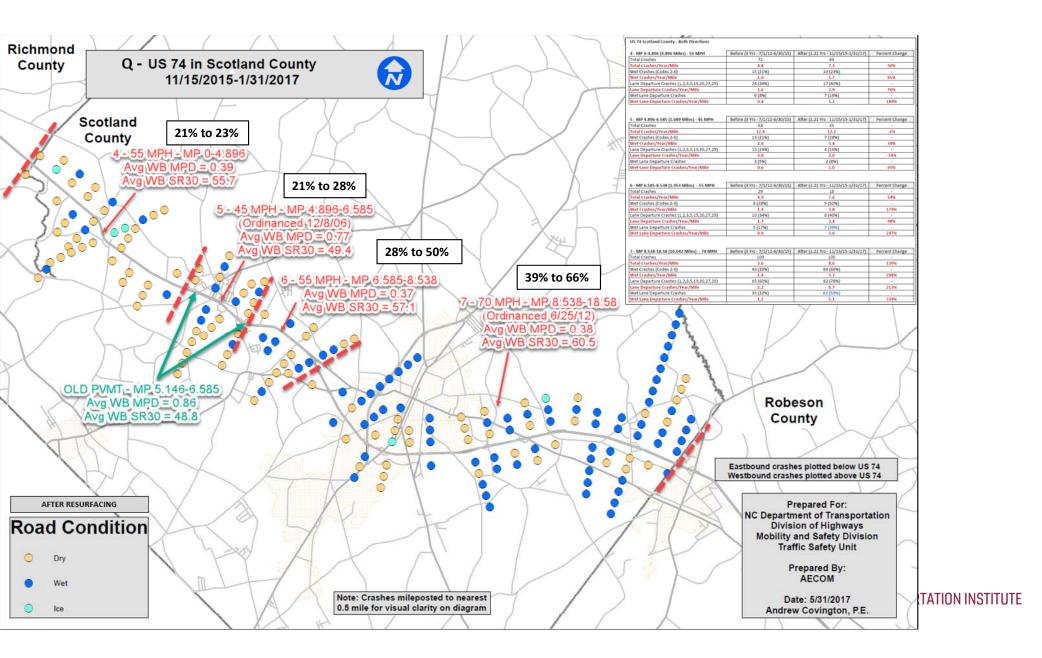
LOOP Q

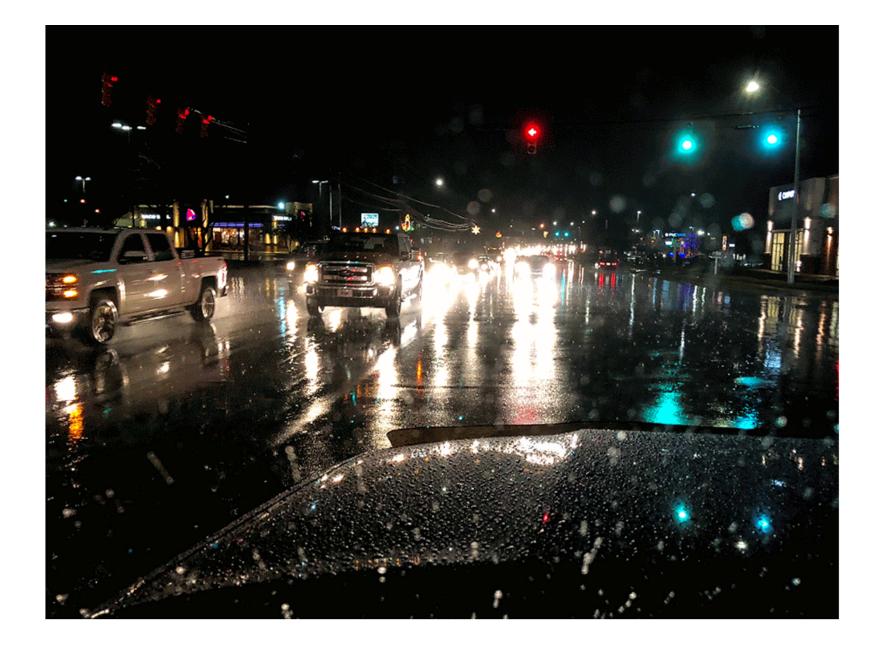
OLD and newer DGAC

0.4 mm = 15.7 mil = 0.01575 inch

2/32 inch = 0.0625 inch = 62.5 mil = 1.6 mm


NORTH CAROLINA Department of Transportation




Research Project 2017-02

Preliminary Crash Data

Shawn A. Troy, PE

Route Summary

- Section 3, 4, and 6 55 MPH
 - 9.09 Miles (years before 3.00, years after 1.21)
 - Total Crashes before = 119
 - Wet Crashes before = 33 (28%)
 - Wet/Year/Mile before = 1.21
 - S9.5C (2015) SR 30 = 51.3-57.1

ADT = 15,000-18,000

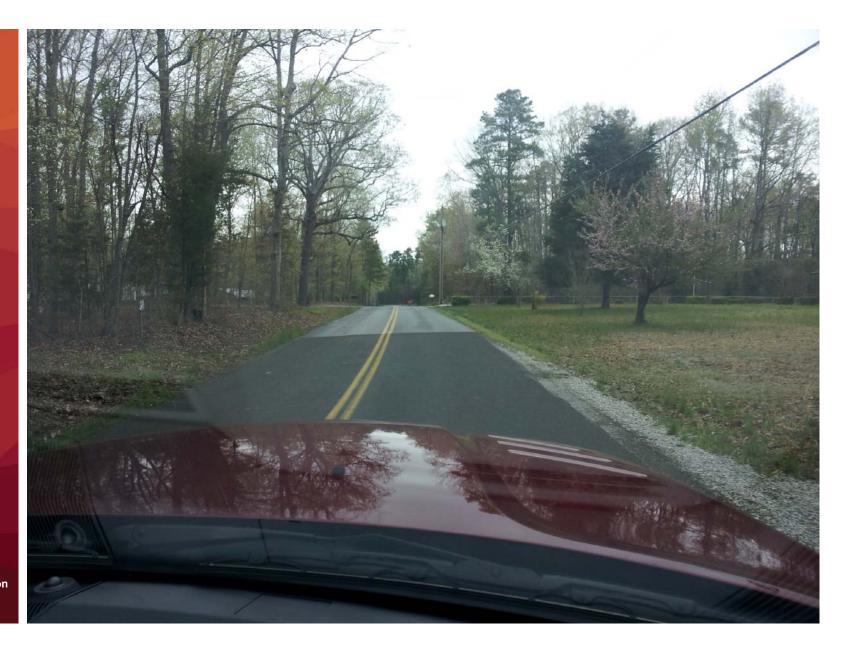
- after = 72
- after = 21 (29%)
- after = 1.91 (58% +)
- MPD = 0.37 0.40

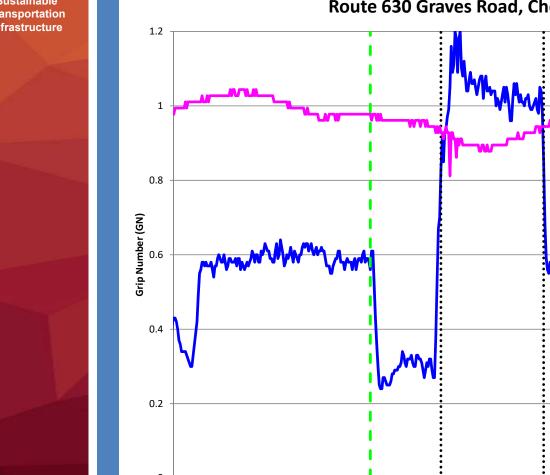
Route Summary

- Section 3, 4, and 6 55 MPH
 - 9.09 Miles (years before 3.00, years after 1.21) A
 - Total Crashes before = 119
 - Wet Crashes before = 33 (28%)
 - Wet/Year/Mile before = 1.21
 - S9.5C (2015) SR 30 = 51.3-57.1

ADT = 15,000-18,000 after = 72 after = 21 (29%) after = 1.91 (58% +)


MPD = 0.37 - 0.40


- Section 2 and 7 70 MPH
 - 24.10 Miles (years before 3.00, years after 1.21) ADT = 15,000-18,000
 - Total Crashes before = 269 after = 234
 Wet Crashes before = 112 (42%) after = 157 (67%)
 Wet/Year/Mile before = 1.55 after = 5.38 (248% +)
 S9.5C (2015) SR 30 = 60.4-60.5 MPD = 0.38-0.40


6. CASE 3 – HFST Location

HFST friction measurement after installation CFME (Grip Tester)

Route 630 Graves Road, Chesterfield Co. **(µdɯ) pəəds** 20 2 – GN •••••РС •••••PT – – Extra - Speed Distance (feet)

Center for Sustainable Transportation Infrastructure

7. Friction Demand

-"Because the intensity of the polishing process increases markedly with tread element slip, all other factors being equal, the lowest friction levels are found on high-speed roads, curves, and approaches to intersections; in short, in locations at which high friction values are needed most."

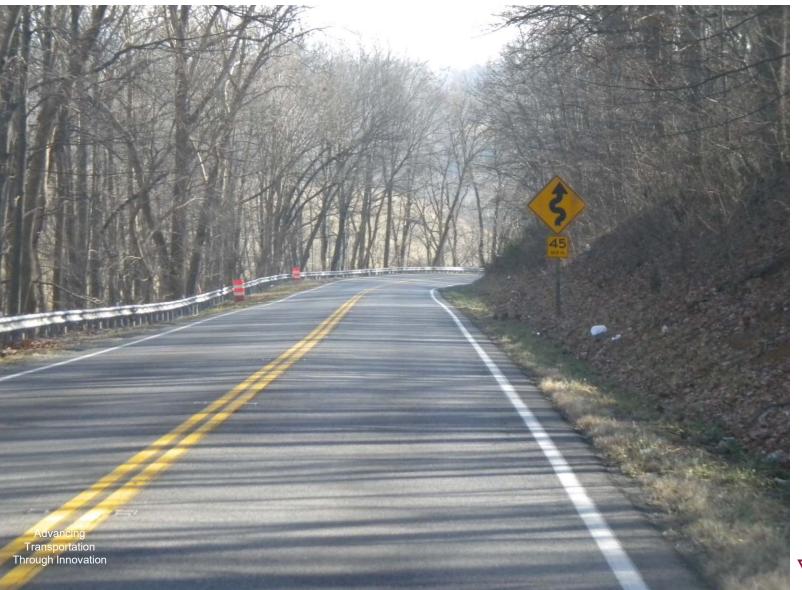
-NCHRP Report 37, 1967

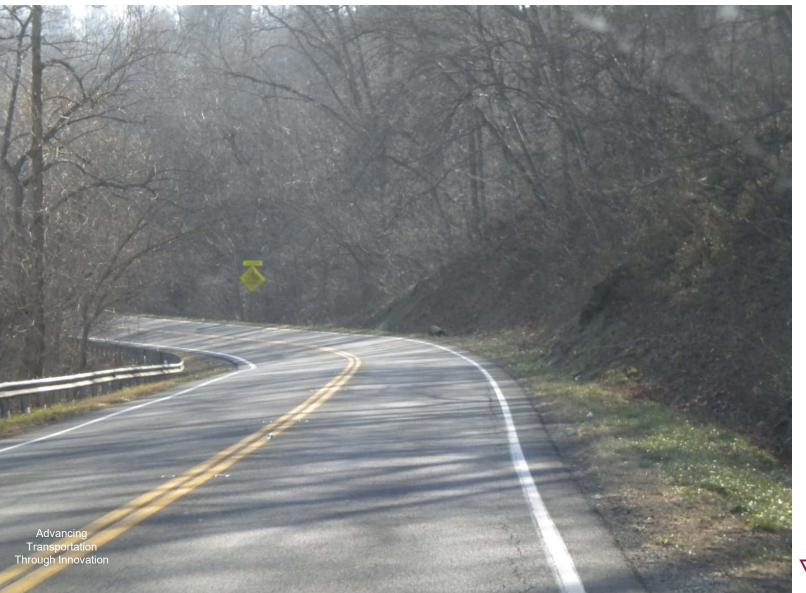
7. Friction Demand

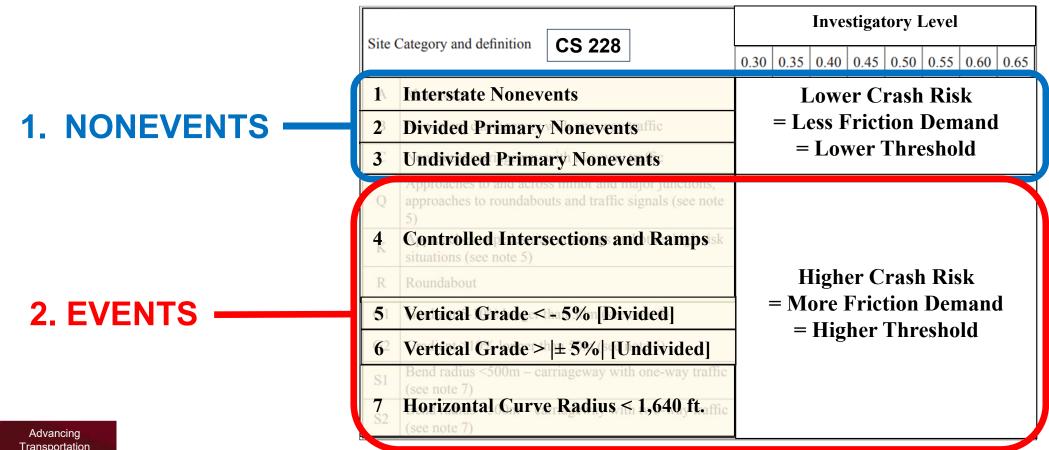
Do we need the same friction everywhere?

- 1. Virginia Minimum friction (SN 40S = 20)
- 2. Minnesota
 - -Interstate: 28-41
 - -Primary:25-37-Secondary:22-37

*Perera et. al. Skid Crash Reduction Programs – Synthesis (MN SN 40R):







Advancing Transportation Through Innovation

TATION INSTITUTE

Friction Demand Categories

Transportation Through Innovation

*CS 228 = Highways England (2019), "Design Manual for Roads and Bridges, Pavement Inspection & Assessment, Skidding Resistance"

Friction Demand Categories

CS 228

Road classification definitions				nvooti	actor		20 mm	h				п	Minimum PSV required for given IL, traffic level and type of site									
			I	nvesti	gatory		su mp	n 		Site category	Site description		Traffic (cv/lane/day) at design life									
		0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65				0-250	251- 500	501- 750	751- 1000		2001- 3000		4001- 5000	5001- 6000	Over 6000
	Interstate highways									Al	Motorways where traffic is generally free-flowing on a relatively straight	0.30	50	50	50	50	50	55	55	60	65	65
Α			line	0.35	50	50	50	50	50	60	60	60	65	65								
в	Divided highways-no event									A2	Motorways where some braking regularly occurs (eg. on 300m approach to an off-slip)	0.35	50	50	50	55	55	60	60	65	65	65
										Bl	Dual carriageways where traffic is generally free-flowing on a relatively straight line	0.3	50 50	50 50	50 50	50 50	50 50	55 60	55 60	60 60	65 65	65 65
С	Two lane road-no event									ы		0.35	50	50	50	55	60	65	65	65	65	68+
										Dual carriageways where some braking	0.35	50	50	50	55	55	60	60	65	65	65	
Q	Approaches to Intersection (&									B2	regularly occurs (eg. on 300m approach to an off-slip)	0.4	55	60	60	65	65	68+	68+	68+	68+	68+
~	roundabouts)											0.35	50	50	50	55	55	60	60	65	65	65
	Pedestrian crossings and other high risk									с	generally free-flowing on a relatively straight line	0.4	55 60	60 60	60 65	65 65	65 68+	68+ 68+	68+ 68+	68+ 68+	68+ 68+	68+ 68+
к	areas										Gradients >5% longer than 50m as	0.45	55	60	60	65	65	68+	68+	68+	68+	HFS
										G1/G2 per HD 28	0.5	60 68+	68+ HFS	68+ HFS	HFS		HFS		HFS	HFS	HFS	
R	Roundabout									к	Approaches to pedestrian crossings	0.55	08+ 65	65	65	HFS 68+		HFS 68+		HFS	HFS	HFS
										~	and other high risk situations	0.55	68+	68+	HFS	HFS		HFS	HFS	HFS	HFS	HFS
G1	Slope 5-10%, longer than 160 feet										Q single carriageways where frequent or	0.45	60	65	65	68+	68+	68+	68+	68+	68+	HFS
										Q		0.5	65	65	65	68+	68+	68+	HFS	HFS	HFS	HFS
G2	Slope >10% longer than 160 feet										sudden braking occurs but in a generally straight line.	0.55	68+	68+	HFS	HFS	HFS	HFS	HFS	HFS	HFS	HFS
										R	Roundabout circulation areas	0.45	50	55	60	60	65	65	68+	68+	HFS	HFS
S1	Curve radius < 1600 feet - divided roads										0.5	68+	68+	68+	HFS		HFS		HFS	HFS	HFS	
										\$1/\$2	Bends (radius <500m) on all types of 0.45 road, including motorway link roads; 0.5	\vdash	50	55	60	60	65	65	68+		HFS	HFS
S2	Curve radius < 1600 feet - two lane roads									31/32	other hazards that require combined	0.5	68+	68+							HFS	HFS
52											braking and cornering	0.55	HFS	HFS	HFS	HFS	HFS	HFS	HFS	HFS	HFS	HFS

Advancing Transportation Through Innovation

TRANSPORTATION INSTITUTE

*CS 228 = Highways England (2019), "Design Manual for Roads and Bridges, Pavement Inspection & Assessment, Skidding Resistance"

Minimum PSV required for given IL, traffic level and type of site Site Site description IL category Traffic (cv/lane/day) at design life 0 - 250501-751-1001-2001-3001-4001-5001· 251-Over 750 2000 4000 6000 500 1000 3000 5000 6000 50 Motorways where traffic is generally 0.30 50 50 50 50 55 55 60 65 65 free-flowing on a relatively straight A1 line 0.35 50 50 50 50 50 60 60 60 65 65 Motorways where some braking A2 regularly occurs (eg. on 300m approach 0.35 50 50 50 55 55 60 60 65 65 65 to an off-slip) Dual carriageways where traffic is 0.3 50 50 50 50 50 55 55 60 65 65 generally free-flowing on a relatively 0.35 50 50 50 60 65 Bl 50 50 60 60 65 straight line 0.4 50 55 65 68+ 50 50 60 65 65 65 50 50 60 65 Dual carriageways where some braking 0.35 50 55 55 60 65 65 **B**2 regularly occurs (eg. on 300m approach 0.4 60 60 65 65 68+ 68+ 68+ 68+ 68+ to an off-slip) 55 Single carriageways where traffic is 0.35 50 50 50 55 55 60 60 65 65 65 С generally free-flowing on a relatively 0.4 55 60 60 65 65 68+ 68+ 68+ 68+ 68+ 0.45 65 straight line 60 60 65 68+ 68 +68+ 68+ 68+ 68+ 60 65 65 HFS 60 68+ 68+ 68+ 68+ Gradients >5% longer than 50m as 0.45 55 68+ 68+ HFS HFS HFS HFS HFS G1/G2 0.5 60 HFS per HD 28 HFS 0.55 HFS HFS HFS HFS HFS 68+ HFS HFS HFS HFS 68+ 65 65 Κ 0.5 68+ 68+ HFS HFS HFS HFS Approaches to pedestrian crossings 65 68+ HES and other high risk situations 0.55 68+ HFS HFS HFS HFS HFS HFS HFS Approaches to major and minor 0.45 60 65 65 68+ 68+ 68+ 68+ 68+ 68+ HFS junctions on dual carriageways and 65 68+ 68+ 68+ HFS HFS HFS HFS Q single carriageways where frequent or 0.5 65 65 sudden braking occurs but in a HFS HFS HFS HFS HFS HFS HFS HFS 0.55 68+ 68+ generally straight line. R Roundabout circulation areas 0.45 50 55 60 60 65 65 68+ 68+ HFS HFS HFS 0.5 68+ 68+ 68+ HFS HFS HFS HFS HFS HFS 0.45 50 55 60 60 65 65 68+ 68+ HFS HFS Bends (radius <500m) on all types of S1/S2 road, including motorway link roads; 0.5 68+ 68+ 68 +HFS HFS HFS HFS HFS HFS HFS other hazards that require combined 0.55 HFS braking and cornering

Table 1 Skid resistance investigatory levels

Site	Skid site description	Investigatory level (IL), units ESC								
category		0.35	0.40	0.45	0.50	0.55	0.60			
1	 Approaches to: a) Railway level crossings b) Traffic signals c) Pedestrian crossings d) Stop and Give Way controlled intersections (where state highway traffic is required to stop or give way) e) Roundabouts. One lane bridges: a) Approaches and bridge deck. 									
2	 a) Urban curves <250m radius b) Rural curves <250m radius c) Rural curves 250-400m radius 		L	L	M M	H				
	a) Down gradients >10%.b) On ramps with ramp metering.									
3	 a) State highway approach to a local road junction. b) Down gradients 5-10% c) Motorway junction area including on/off Ramps d) Roundabouts, circular section only. 									
4	Undivided carriageways (event-free).									
5	Divided carriageways (event-free).									

Friction Demand Categories NZTA

(From NZTA T10, 2010) TRANSPORTATION INSTITUTE

Determining Friction Thresholds

Type of Roadway	Method 3 SR30 Investigatory Level
Divided	30-35
Undivided	50-55
Curves	50-55
Intersections	55-60

Initial Texture Depth for Trunk Roads/Motorways

Road type	Surfacing type	Average / 1,000 m	Average / 10 measures
High Speed roads >50 mph	Thin surface overlay Aggregate size<14mm	MPD 1.4 mm	MPD 1.0 mm
	Surface treatments	MPD 1.6 mm	MPD 1.25 mm
Lower Speed roads <40 mph	Thin surface overlay Aggregate size<14mm	MPD 1.4 mm	MPD 0.9 mm
	Surface treatments	MPD 1.25 mm	MPD 1.0 mm
Roundabout, high speed >50 mph	All surfaces	MPD 1.25 mm	MPD 1.0 mm
Roundabout, low speed <40 mph	All surfaces	MPD 1.0 mm	MPD 0.9 mm

(From British Standard EN 13036-1)

Texture Demand Categories NZTA

Table 3 Minimum macrotexture requirements

Permanent speed limit	Chi	pseal		ic concrete, C ≥ 0.4	Asphaltic concrete, ESC < 0.4		
	ILM	TLM	ILM	TLM	ILM	TLM	
50km/h and less	1.0	0.7	0.4	0.3	0.5	0.5	
Less than or equal to 70km/h but >50km/h	1.0	0.7	0.4	0.3	0.7	0.5	
Greater than 70km/h	1.0	0.7	0.9	0.7	0.9	0.7	

Through Innovation

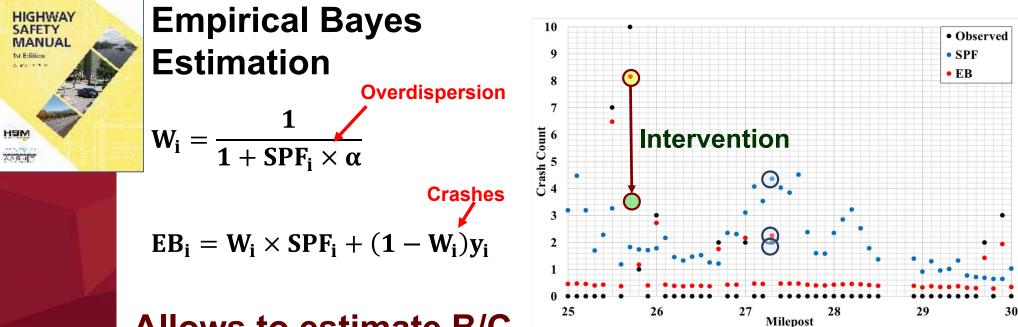
(From NZTA T10, 2010)

8. Pavement Friction Management

HIGHWAY SAFETY MANUAL Int Elitist And Constants And Consta

Advancing Transportation Through Innovation

8. Pavement Friction Management


Safety Performance Functions

 $SPF_{i} = e^{\beta_{0} + \sum_{j} (\beta_{j} X_{ij}) + \varepsilon}$ SPF_{i} = crash rate for the *i*th segment of roadway

- X_{ij} = value of variable j at the i th road segment (friction, macrotexture, curvature, grade, intersection, etc.)
- β_j = estimated parameter coefficient for the jth variable (where: j > 0)
- E = Gamma distributed error

Model Variables	Coefficient
In(AADT)	1.201
Divided	-2.685
Intersection	-0.118
Pavement Type	-0.600
SR	-0.046
Gradient	0.032
H. Curvature	0.061
SR*Intersection	0.011
SR*Divided	0.039
SR*Pave Type	0.014
Route ID	-
RTE 3	-0.274
RTE 4	0.336
RTE 5 A	-0.119
RTE 5 B	0.723
RTE 8	-0.025
RTE 12	-0.139
RTE 82	-0.368
RTE 101	0.525
RTE 395	-0.112
RTE 405	0.877

8. Pavement Friction Management

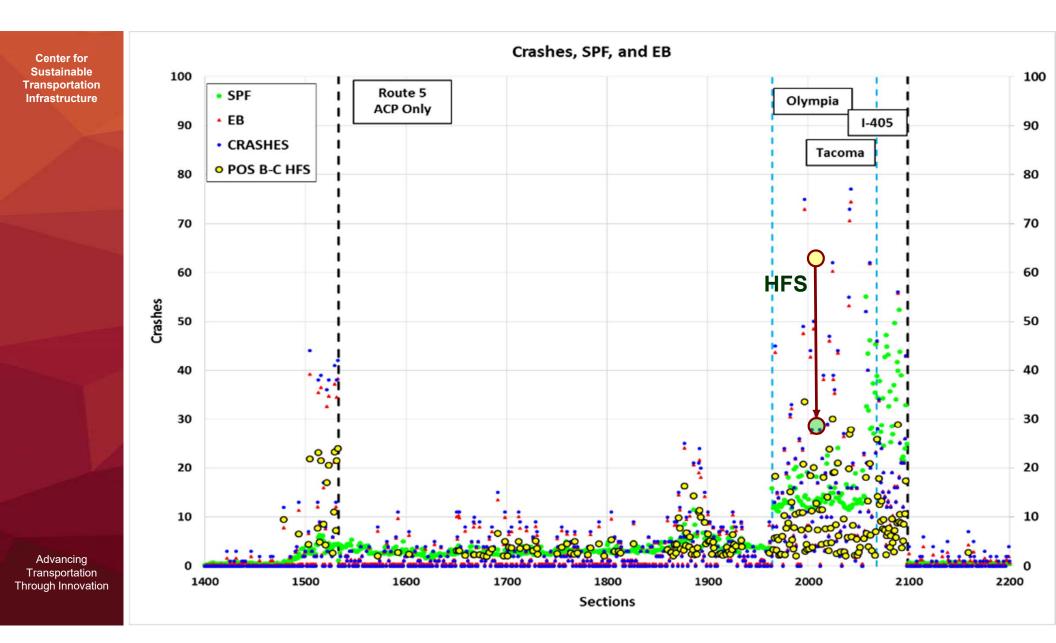
Allows to estimate B/C

Advancing Transportation Through Innovation **Benefits crash reduction / Costs of the intervention**

TRANSPORTATION INSTITUTE

8. Pavement Friction Management

Cost/ Benefit Analysis


- -Asphalt pavement only
 - Estimate the potential savings from applying the treatment.
- -Average crash cost = \$109,271

-Two treatments:

- HMA Overlay: Improve to SR = 65, Cost/Lane = \$7,040
- HFST: Improve to SR = 85, Cost/Lane = \$19,008

Accident reduction

 $EB_{HMA-OL,i} = \frac{\lambda_{HMA-OL,i}}{\lambda_i} \times EB_i \qquad EB_{HFS,i} = \frac{\lambda_{HFS,i}}{\lambda_i} \times EB_i$

Savings per	S	Sections		Pred. crash	Total	Total		
Section >	Total	OL	HFS	reductions	Costs	Savings	B/C	
\$2.0 M	14	0	14	378	\$1,767,744	\$39,586,704	22	
\$1.5 M	18	0	18	446	\$2,337984	\$46,355,183	20	
\$1.0 M	30	2	28	595	\$3,898,584	\$61,136,139	16	
\$0.5 M	5 M 69 7 62		62	894	\$8,536,932	\$89,106,970	10	
ALL	227	102	125	1,172	\$18,438,264	\$109,584,039	6	
Savings per	Sections			Pred. crash	Total	Total	B/C	
Sections >	Total	CDG	HFS	reductions	Costs	Savings	D/C	
\$5.0 M	22	7	15	1,448	\$3,885,248	\$154,381,371	40	
\$3.0 M	67	34	33	3,126	\$11,323,712	\$330,248,321	29	
\$2.0 M	105	49	56	4,072	\$17,948,608	\$427,000,581	24	
\$1.0 M	201	104	97	5,505	\$34,183,040	\$567,345,342	17	
\$0.5 M	286	158	128	6,193	\$48,335,680	\$628,406,865	13	
ALL	406	225	181	6,608	\$67,343,808	\$654,666,028	10	

Acknowledgements

 Contributors: Kevin McGhee – Virginia Transportation Research Council & Andy Mergenmeier, FHWA

- Research Team:
 - Gerardo Flintsch
 - Samer Katicha
 - Ross McCarthy
 - Edgar de León Izeppi

Questions?