

PROJECT CONTRIBUTORS

Whitman, Requardt and Associates, LLP

Designer

Schnabel Engineering, Inc.

Geotechnical Investigation

Phillips Construction, LLC

Prime Contractor

Procon, Inc.

Concrete Sub-contractor

Conveyance of Concrete

PER, Inc.

- Sub-contractor for

Chandler Concrete, Inc.

Concrete Supplier

McDonough Bolyard Peck, Inc.

Construction Inspection

Virginia Department of Transportation

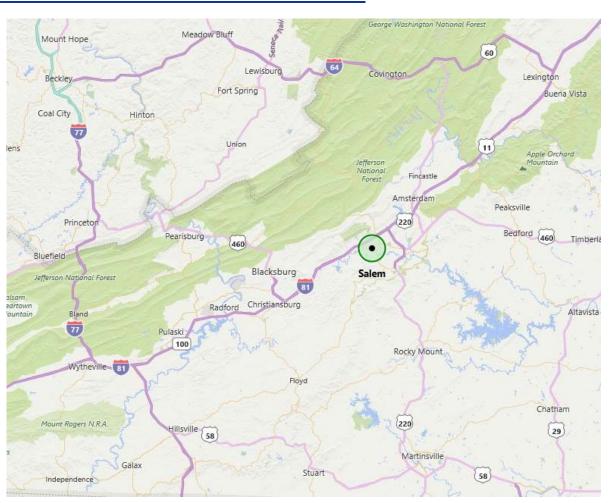
Owner, Project Mgr.

Virginia Transportation Research Council

Technical Support

PERVIOUS CONCRETEMaking the Impossible Possible

Construction of the I-81 Exit 140 Park-n-Ride in Salem, VA


Travis Higgs, P.E.

VDOT Salem Materials

VDOT

Exit 140 Park-n-Ride location

The Impossible

 Existing Exit 140 Park-n-Ride surrounded by two secondaries, a primary and the

interstate

Already over crowded

<100 parking spaces

No room for expansion

The Possible

- Exit 140 Park-n-Ride
 - Pervious Concrete
 - Approx. 250 spaces
 - Approx. 2.5 acres
- Exit 118 Park-n-Ride
 - Conventional Asphalt
 - Approx. 250 spaces
 - Approx. 4 acres

Why Pervious?

 A permeable pavement alternative was attractive given the lack of space for expansion of park and ride at the Exit 140 interchange.

Why Concrete?

- While VDOT did have permeable asphalt park and ride installations, there are not a comparable amount of pervious concrete installations.
- With this installation, the pros and cons of permeable asphalt and pervious concrete can be evaluated over time.

The Perceptions under Evaluation

Permeable Asphalt

 More prone to clogging and loss of void space over time due to viscoelasticity of asphalt as a binding agent in an open graded mixture

Pervious Concrete

 Less prone to clogging and loss of void space over time, potentially more prone to raveling with age

Considering Pervious Pavement as an Option

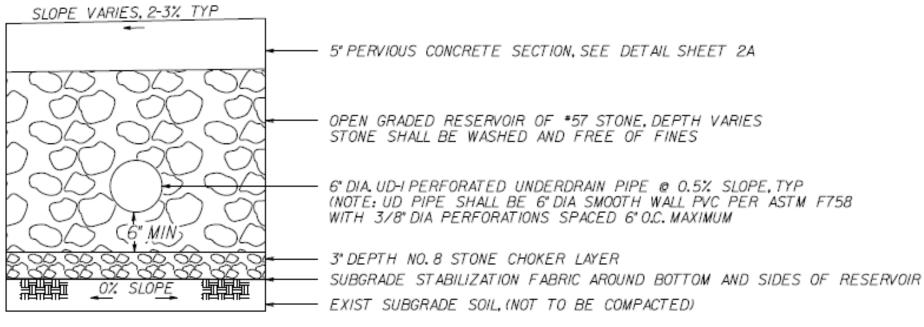
- Pros
 - Save real estate
 - No run off
- Cons
 - Maintenance
 - It should be noted that all stormwater management systems require maintenance
 - Durability?

Getting Started with a Permeable Pavement

VIRGINIA DEQ STORMWATER DESIGN SPECIFICATION No. 7

PERMEABLE PAVEMENT

VERSION 1.8 March 1, 2011



Getting Started with a Permeable Pavement

- Geotechnical Site Evalution
 - To design a permeable pavement system with no flow leaving the site (no underdrain) the measured infiltration rate of subsoils must be 0.5-inch per hour or greater.
- Exit 140 Evaluation Results
 - Minimum Infiltration Rate Measured = 0.88 in./hr.
 - Average Infiltration Rate Measured = 2.38 in./hr.
 - Infiltration Rate Testing completed in accordance with VA DCR Stormwater Design Specification No. 8

Exit 140 Park-n-Ride Typical Section

STONE RESERVOIR TYPICAL SECTION N.T.S.

Sizing Reservoir Layer

- Section 6.7 of DEQ Design Specification No. 7
 - Thickness of reservoir layer determined by
 - Runoff storage needs
 - Infiltration Rate of in situ soils
 - Pavement Design structural requirements of subbase
 - Depth of water table and bedrock
- Exit 140 Park and Ride
 - 2 3 feet of No. 57 Aggregate used primarily as a fill material rather than compacted soil

Pervious Concrete Test Slab Acceptance Criteria

- Fresh Density and Void Content (ASTM C 1688)
 - Density: 125 pcf to 140 pcf
 - Voids: 15% to 25%
- Infiltration Rate (ASTM C 1701)
 - Greater than 100 inches per hour
- Hardened Density and Void Content (ASTM C 1754)
 - Density: +/- 5 pcf of Approved Mix Design
 - Voids: +/- 4% of Approved Mix Design
- Core Length (ASTM C 174)
 - -3/8 in. to + 1.5 in. of Design Thickness
- Average Compressive Strength at 28 days (ASTM C 39)
 - Greater than 2,000 psi

"Development of a Special Provision on the Use of Pervious Concrete as a Stormwater Management Tool in Parking Lots" – VTRC Nov. 2017

Fresh Pervious Concrete Test

- ASTM C 1688 Fresh
 Density and Voids Test
 was performed on every
 truck load
- This was the only fresh test performed on the pervious concrete for acceptance
- Fresh density was very sensitive to moisture content

Fresh Pervious Concrete Test

 Inverted slump cone test was attempted, but found to not be as practical as the squeeze test

Infiltration Rate Test

- ASTM C 1701
- Infiltration Rate was never a problem as the minimum 100 in./hr. established for the project was easily attained and may have actually been too high on occasion as some measured values exceeded 1,000 in./hr.

Evaluation of Cores for Strength, Hardened Density and Voids

- Cores were taken to evaluate the strength, in-place density, void content and thickness of the pervious concrete.
- In-place density and voids were a challenge throughout the project. There was a slight variation between the density and voids measured using ASTM C 1754 Method A versus Method B. Method A (slow drying) was generally used for the project as the ASTM recognizes that Method B (fast drying) may produce lower density and higher void content.

• Strength (min. 2,000 psi) was generally achieved on average after 28-days of field curing. Cores checked for density and voids by use of Method A (slow drying) can be used for strength testing; however, we found 30% reduction in strength for oven dried

cores vs. field cured.

Test Slab

- Forms on No. 57 Stone
- 14 ft x 19 ft w/ joint to test joint rolling, resulting in 12.5 ft x 19 ft slab for shrinkage crack evaluation
- Tried three variations of cross-rolling
 - No Weight
 - One Plate Weight 35 lbs
 - Two Plate 'Weights 70 lbs

Test Slab

- Concrete Placement
- Motorized Screed
- Cross-Rollers

Test Slab

- "Pizza Cutter" for Joints
- 0.5-inch strips were placed on forms for initial screed pass and then removed for weighted rolling
- Variations in weight of cross-roller did not make an impact on density

Test Slab Results

- Fresh Density and Void Content (ASTM C 1688)
 - Density: 128.4 pcf: 125 pcf to 140 pcf

 PASS
 - Voids: 19.6%: 15% to 25% PASS
- Infiltration Rate (ASTM C 1701)
 - Average = 343 in/hr. : Greater than 100 inches per hour PASS
- Hardened Density and Void Content (ASTM C 1754)
 - Density: 121.4 pcf: +/- 5 pcf of Approved Mix Design (122.8 132.8 pcf) FAIL
 - Voids: 25.6%: +/- 4% of Approved Mix Design (16 24%)
- Core Length (ASTM C 174)
 - Average Length = 6.07 in.: -3/8 in. to + 1.5 in. of Design Thickness PASS
- Average Compressive Strength at 28 days (ASTM C 39)
 - 7-day Average = 1,067 psi : Greater than 2,000 psi
 - 28-day Average = 2,590 psi : Greater than 2,000 psi PASS

Preparations for Production Slabs

Forms are set and No. 57
 Aggregate has been graded.

First Production Slabs / Test Slab No. 2

- Due to lack of density on Test Slab, cross-rollers were replaced with "heavy roller"
- On the test slab 0.5-inch strips were used for initial motorized screed pass; however, due to difficulty with getting the concrete to compact down and fear of slab to slab roughness, contractor switched to 0.375-inch strips.

First Production Slabs / Test Slab No. 2

- Telebelt conveyor was used to distribute concrete from the trucks to the forms.
- Despite concerns of pervious concrete being exposed to air too long, the telebelt conveyor proved to be a valuable tool to distribute concrete quickly and without segregation

First Production Slabs / Test Slab No. 2

 Procon had a lot of workers ready to go and kept a very tight operation with concrete being covered with plastic in 10 – 15 minutes after discharge

Test Slab No. 2 Results

- Fresh Density and Void Content (ASTM C 1688)
 - Density: 130.3 pcf: 125 pcf to 140 pcf

 PASS
 - Voids: 18.5%: 15% to 25% PASS
- Infiltration Rate (ASTM C 1701)
 - Average = 620 in/hr. : Greater than 100 inches per hour PASS
- Hardened Density and Void Content (ASTM C 1754)
 - Density: 122.6 pcf: +/- 5 pcf of Approved Mix Design (122.8 132.8 pcf) FAIL
 - Voids: 23.0%: +/- 4% of Approved Mix Design (16 24%)
- Core Length (ASTM C 174)
 - Average Length = 5.1 in.: -3/8 in. to + 1.5 in. of Design Thickness
- Average Compressive Strength at 28 days (ASTM C 39)
 - 28-day Average = 2,001 psi : Greater than 2,000 psi PASS

Next Production Slabs / Test Slab No. 3

- In an attempt to achieve more inplace density, the contractor switched to 0.5-inch strips on top of the forms and followed the mechanical screed with the heavy roller and weighted cross-rolling.
- The mix-design was slightly altered to allow more sand and 0.5% less voids (new target 19.5%)
- These steps were taken as the success of the pervious concrete is dependent upon the ability to effectively balance permeability, strength and stability.

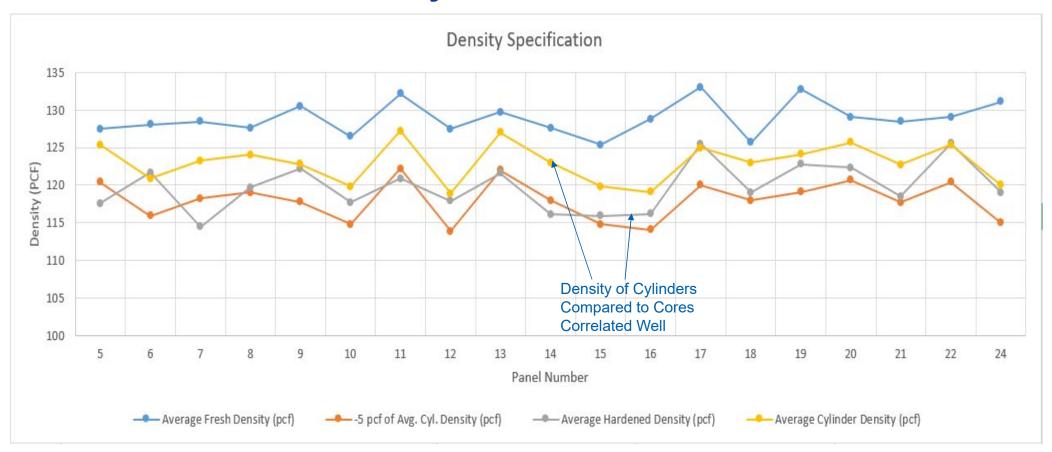
Next Production Slabs / Test Slab No. 3

- Contractor performed a small test section using only a pan float for compaction and finishing of the pervious concrete to see if it could achieve the necessary targets.
- The ability to use a pan float would have allowed the contractor to not have to form up 12-feet widths/lanes when they poured thus allowing them to place the pervious concrete more like a floor slab than concrete pavement which would in turn mean more production.
- Pan float compacted areas showed less density and less permeability than rolled locations.

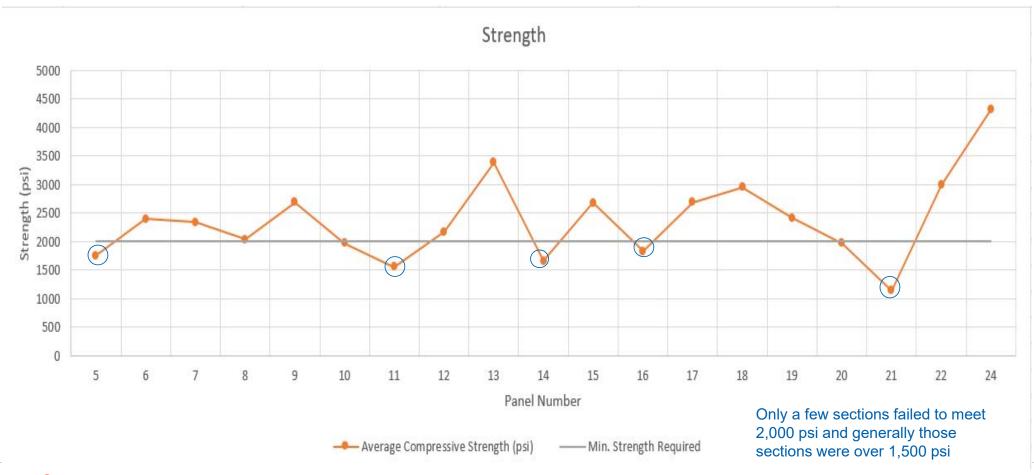
Test Slab No. 3 Results

- Fresh Density and Void Content (ASTM C 1688)
 - Density: 130.3 pcf: 125 pcf to 140 pcf

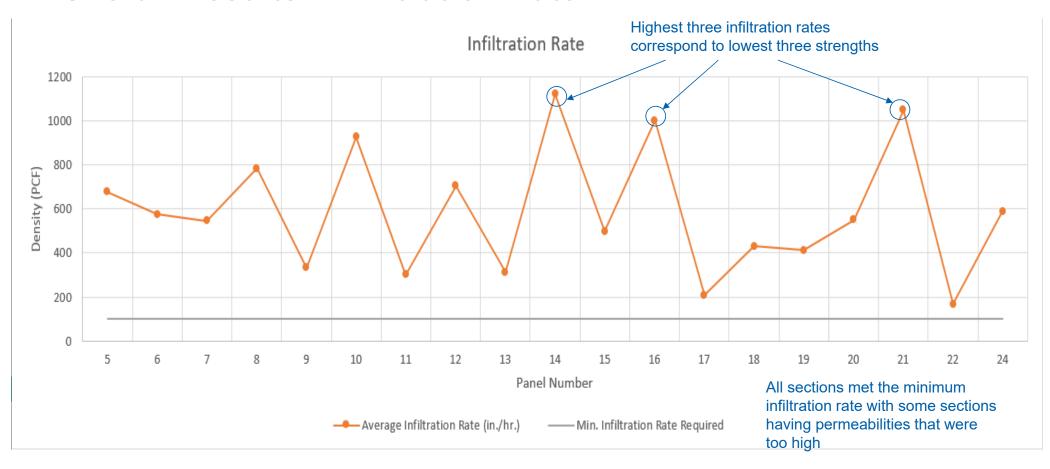
 PASS
 - Voids: 18.5%: 15% to 25% PASS
- Infiltration Rate (ASTM C 1701)
 - Average = 540 in/hr. : Greater than 100 inches per hour PASS
- Hardened Density and Void Content (ASTM C 1754)
 - Density: 119.6 pcf: +/- 5 pcf of Approved Mix Design (122.8 132.8 pcf) FAIL
 - Voids: 26.6%: +/- 4% of Approved Mix Design (16 24%)
- Core Length (ASTM C 174)
 - Average Length = 5.1 in.: -3/8 in. to + 1.5 in. of Design Thickness PASS
- Average Compressive Strength at 28 days (ASTM C 39)
 - 7-day Average = 1,413 psi : Greater than 2,000 psi
 - 28-day Average = 1,875 psi : Greater than 2,000 psi FAIL


Test Slab No. 3 Results

- Although the acceptance criteria were not all met for the test slab, we finally had a mix design and placement plan that achieved the optimum balance of durability and permeability.
- Although not a specification test, as a check for durability, we performed ASTM C 1747.
 - Test on cylinders produced 34% mass loss.
 - Tests were run on cores
 - Cores with low density had > 40% mass loss
 - Cores with higher density had < 40% mass loss



Overall Results - Density

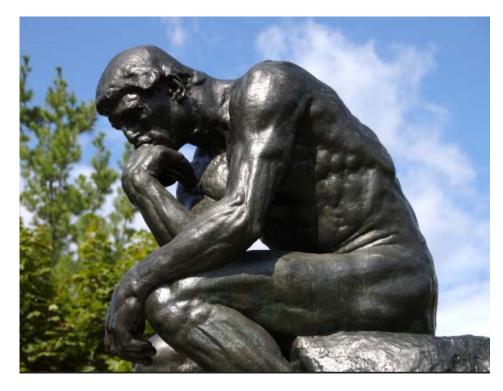


Overall Results - Strength

Overall Results – Infiltration Rate

The Goal

Strength, Durability and Permeability



QUESTIONS?

