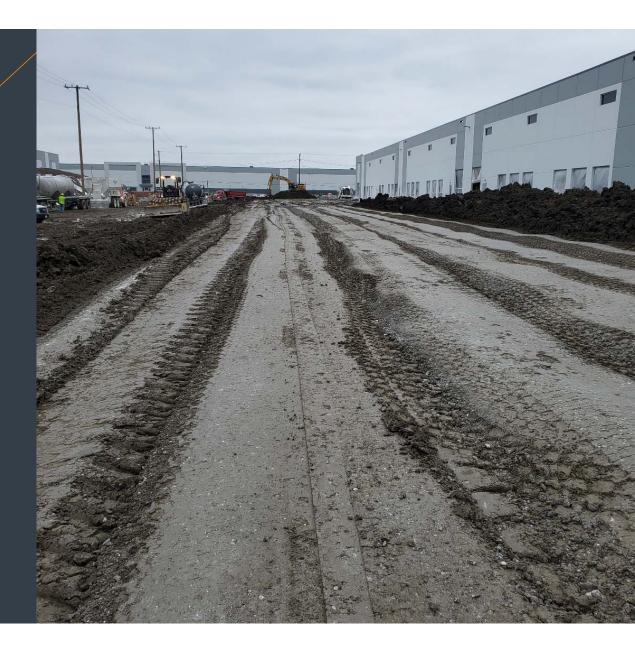


Chemical Modification and Stabilization of Subgrade and Associated Quality Assurance Craig Addison

February, 12th 2020 Williamsburg, VA


Agenda

- 01 Goals of Chemical Modification
- 02 Stabilization Options
- 03 The Right Product for the Right Soil
- 04 Mix Design and Testing

Goals of Chemical Modification

01

Goals of Chemical Modification

- Reduce shrink/swell of expansive soils or existing materials.
- Increase strength to provide long-term support for the pavement structure.
- Reduce pavement thickness.
- Reduce moisture susceptibility and migration.
- Utilize local materials.
- Provide a working platform for construction of subsequent layers by drying out wet areas and/or increasing strength properties.
- Save money and/or time!

CARMEUSE

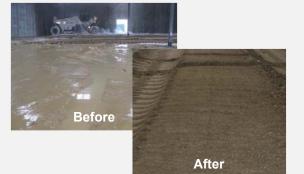
There are many options when dealing with difficult subgrade materials

Quicklime	Lime Kiln Dust	Lime/FlyAsh Blends	Portland cement		
ASTM C977/ AASHTO M216	No national standard for LKD	• ASTM C593	• ASTM C150		
Consists of calcium and magnesium oxides	 Co-product of quicklime production 	Blend of quicklime and fly ashSpecification includes chemical	 Blend of calcium silicates and calcium aluminates 		
Limits the amount of carbon	 Blend of quicklime and fly ash 	and physical properties	 Typically type I cement is used 		
dioxide Limits moisture	 Provides additional pozzolanic reactivity in leaner clay soils 	 Option for type C and F ash Evaluation based on strength	 Type II cement has been used - sulfate attack 		
Available lime reacts rapidly with moisture	 Standard DOT specification include 				
 Specification also includes hydrated lime 	 Combined totals CaO and MgO 				
	 Limit of carbon dioxide as LOI 				
	 Moisture 				
	• Sulfate				
	Minimum gradation				

4

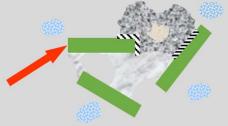
Quicklime and Lime Kiln Dust Modification and Stabilization

Dry


- Fast and effective
- Chemically bound water
- Evaporative heat generation
- Reduced moisture-holding capacity

Modify

- Reduce plasticity
- Minimize shrink swell potential
- Improved compaction
- Increase in shear strength


Stabilize

- Increased pH solubilizes Si and Al from clays
- Increased strength and durability
- Lower absorption/moisture barrier
- Reduced Freeze-thaw susceptibility

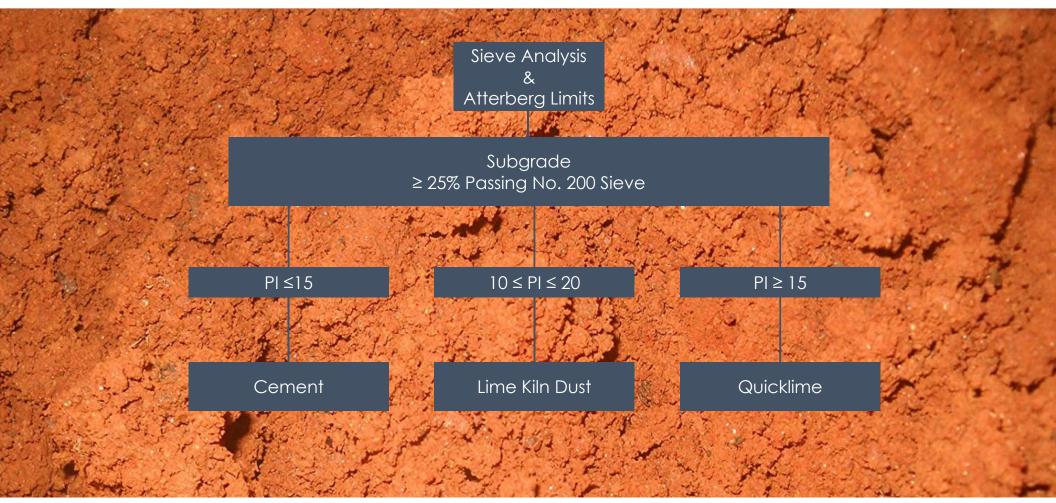
Calcium Hydroxide from lime

Cement Modification and Stabilization

Dry/Modify

- Cement hydration binds water
- Dry bulking agent
- Minimize shrink swell potential
- Increase in shear strength

Stabilize


- Hydration of cement forms CSH and CAH
- Increased strength and durability
- Lower absorption
- Reduced Freeze-thaw susceptibility

Before

Generalized Additive Selection Guideline

Laboratory Evaluations for Lime Stabilization

1. pH Determination for Minimum Lime Content

- ASTM D 6276 (Eads Grim Test)
- Min amount of lime to raise soil pH level to 12.4

2. Optimum Moisture Content

- ASTM D 698 (Standard Proctor Density)
- Generally increases with lime
- Mellow period

3. Unconfined Compressive Strength

- ASTM D 5102
- Minimum of 125 psi for most states
- Freeze-thaw durability

Laboratory Evaluations for Soil-cement

- 1. Optimum Moisture Content
 - ASTM D 558 (~ASTM D698)
 - Allows for reuse of material
 - $-\frac{3}{4}$ " material with 4" mold

2. Unconfined Compressive Strength

- ASTM D 1633
- Compressive strength varies by design
- 3. Freeze-Thaw testing
 - ASTM D 560
 - Compaction with D558
 - Freeze-thaw durability

Stabilization field testing

General Requirements Safety, treatment depth, temperature limitations, wind restrictions, etc.

Subgrade Preparation & Scarification	Spreading	Water	Mixing		Remixing	Compaction	Curing time
 Moisture density testing Rough grade 	 Ensuring correct dosage Pan test 	 Ensure there is enough moisture for hydration 	reclaimer	stage based on many	Powered reclaimer Proper gradation	Post stabilization moisture density	Bituminous coverAllowing

Ensuring you have the tools to handle any site

Thank you

