Joint Deterioration Cause & Mitigation

51st Annual Mid-Atlantic Quality Assurance Workshop February 13-15th, 2018 Dover, Delaware

Steven L. Tritsch, P.E. stritsch@iastate.edu

Outline

- A Little History
- Challenge
- Types and Mechanisms
- Saturated Freeze-Thaw
- Oxychloride Formation
- Sawing Practice
- Seal or Fill
- In-Short
- References

A Touch of Iowa History

Early pavements were built with gravels until the late 30's.

Original slabs were 18' wide, 20' starting in 1935, 22' in 1949, and 24' in 1971.

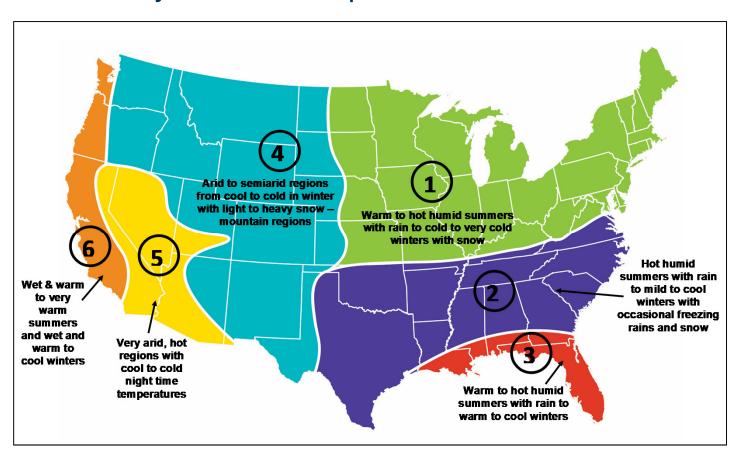
D-cracking was researched extensively and poor aggregate sources identified. In 1952, air entrainment was required to mitigate freeze-thaw damage.

Early 1990's saw the advent of "early joint deterioration" leading to more research into vibration, air content, saturation levels, and expansion of paste via calcium oxychloride.


Built in 1914, 18' wide, no longitudinal joint, 25' formed transverse joints

Moscow Road 2014

The Challenge


The Challenge

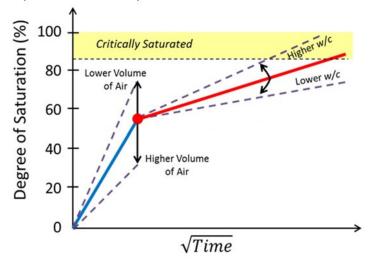
The Clues

Predominately in cold, wet places

Types and Mechanisms of Joint Deterioration

Saturated Freeze-thaw Damage

- Volume of pores
 - Measure mass change from oven dry to vacuum saturated
- Degree of saturation


➤ Compare mass of sample with oven dry and saturated

masses

Sorption / Saturation

> ASTM C 1585 (modified)

Types and Mechanisms of Joint Deterioration

Calcium Oxychloride Formation, Expansion, and Damage

- Chemical Reaction
 - Calcium chloride and calcium hydroxide forms calcium oxychloride cracking due to volume change
- Mitigate
 - > Use SCMs
 - > Reduces calcium hydroxide
 - ➤ Use low w/c ratios to reduce fluid transport
 - Proper entrained air-void system

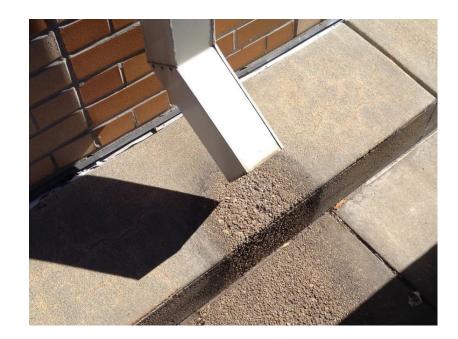
The Causes

Saturated freeze thaw

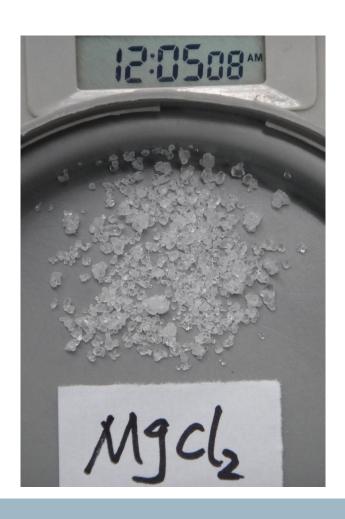
Oxychloride formation

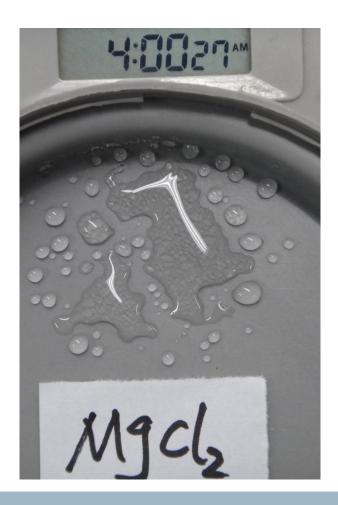
Sawing practice

Saturated freeze thaw


Marginal w/cm
Marginal air
Poor local drainage
Leads to rapid saturation

Shadowing Thin flakes




Saturation

Damage occurs where the concrete does not dry out Water needs space to expand into

Saturation

The Causes

Saturated freeze thaw

Oxychloride formation

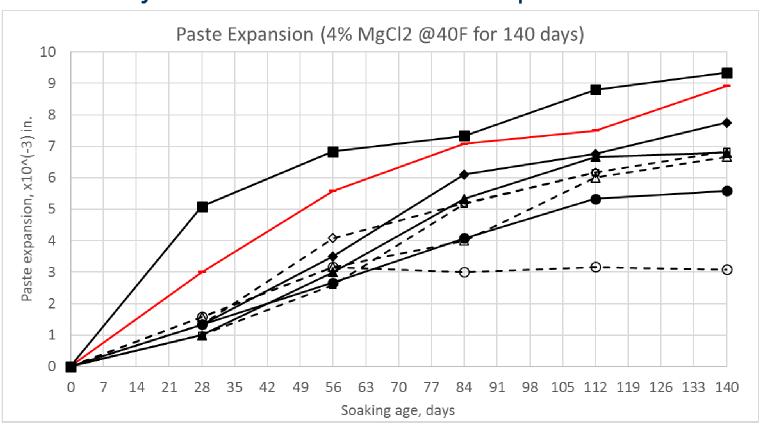
Sawing practice

Salts can cause chemical attack

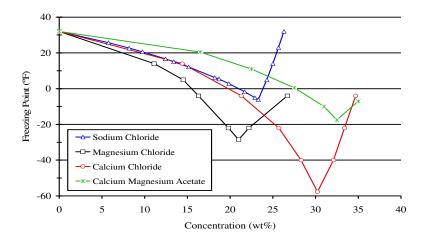
Calcium oxychloride

- Calcium hydroxide
- Chlorides from salts (MgCl₂ and CaCl₂)

CaCl₂ @ 40 °F


- Expands >30%
- At ~40°F
- Use SCMs to reduce CaOH

Sutter


Salts can cause chemical attack

Calcium oxychloride - Sealers can help

How Much is Enough

Salt	Concentration (wt%)	Freezing Point (F)
Sodium Chloride	23.30	-6.16°
Magnesium Chloride	21.00	-24.50°
Calcium Chloride	30.22	-57.60°
Calcium Magnesium Acetate	32.50	-17.50°

The Causes

Saturated freeze thaw

Oxychloride formation

Sawing practice

What is the common denominator

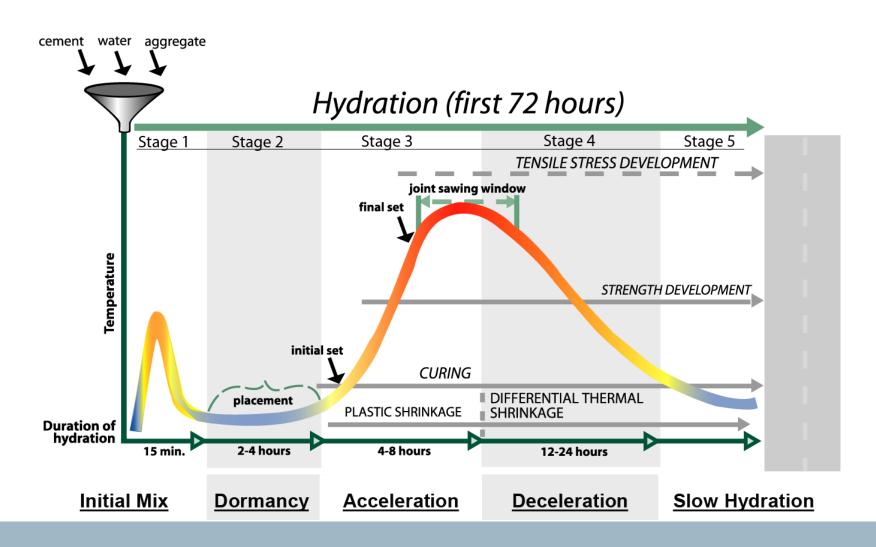
The Objective

Preventing Joint Deterioration in New Pavements

Soil, Subgrade, and Base systems

- Stabilized subgrade
- Granular subbase
- Drainage of pavement system

Concrete Mixture Recommendations


- Low water-cement ratio
- Supplementary cementitious materials
- Well-graded aggregates
- Air-void system

Preventing Joint Deterioration in New Pavements

Construction Practices

- Curing
 - > Ensure adequate coverage and application rate
- Sawing joints
 - > Sawing window and proper depth
- Sealing joints
 - > If seal, have to maintain the seal
 - > Consider drainable base
- Surface Sealers
 - ➤ If use, consider high solids content
 - Research is ongoing

Sawing Window

Seal or Not to Seal – or "Fill"

Built in 1921, 18' wide, 7-8-7 slab, no jts

Type of construction

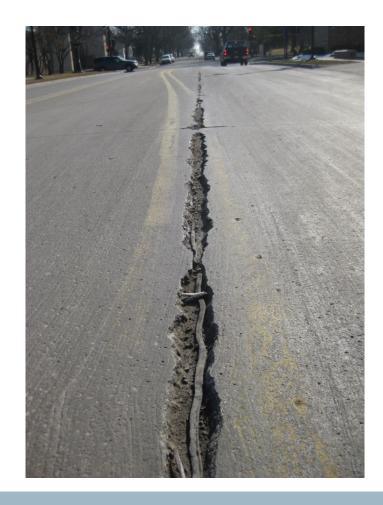
- New
- Overlay
- Panel size

Foundation

- Natural subgrade
- Free draining base
- Treated base

Traffic pattern and flow

Old US 20, Woodbury County, 2014


What do we want to mitigate

What do we want to mitigate

Sealant Types

Hot-pour asphalt based Cold pour

- Silicone
- Nitrile rubber
- Polysulfide
- Polymeric low modulus

Preformed compression seals

Maintenance Activities to Reduce Joint Deterioration Risk

Routine Maintenance

- Joint cleaning and sealing
- Surface sealers
- Drainage

Winter Maintenance

- Deicing/anti-icing chemicals 13,472 lane miles
 - ➤ DE averaged 463,333 gallons of NaCl brine application in the last three years #1 state was IA 20,209,040 gal, 19,279 ln mi
 - > DE averaged 46,781 tons of NaCl in last three years #1 state was NY 920,866 tons, 43,603 In mi
 - Calcium chloride and magnesium chloride are more detrimental to cement paste than sodium chloride
- Do not expose concrete to salt for at least 30 days after placement

So...

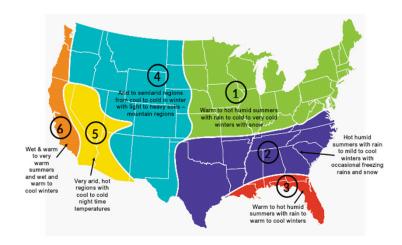
The game has changed

- Water has to be prevented from saturating the concrete
- Permeability of the concrete should be as low as practical
- The air void system in the in-place concrete must be adequate

The Lessons

Significant change seems to be deicing salt selections

Concrete ingredient changes may have contributed

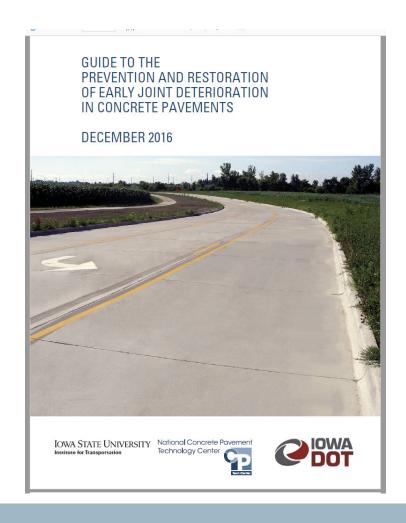

Acknowledging that safety is paramount, we need to make better concrete to resist these salts

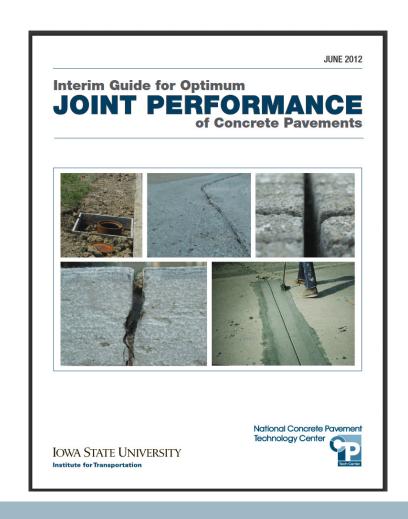
- Air void system
- w/cm
- SCM dose

A Better Specification

Require the things that matter

- Transport properties (everywhere)
- Aggregate stability (everywhere)
- Strength (everywhere)
- Cold weather resistance (cold locations)
- Shrinkage (dry locations)
- Workability (everywhere)


AASHTO PP 84-17


Section	Property	Specified Test	Specified \	/alue	Mixture Qualification	Acceptance	Sele Det		Spe cial Notes	
6.3 Concrete Strength										
531	Fishira Strength	AAS-TOTS7	4.1 MPa	900 ssi	Yes	Y≅	-Cooke't for at			
5.3.2	Compressive Strength	AASHTOT22	24 MPs	≆60 ж	Yes	Te				
6.4 Reducing Unwanted Slab Warping and Cracking Due to Shrinkage (if Cracking is a Concern)										
5.41.1	Volume of Paste		256		Yes	Na				
5.4.1.2	U-restrained Volume Change	ASTIM CLET	420 uz	at 26 say	Yes	No	- Shoose only one		C/-gConditions	
5.4.2.1	Unrestrained Wolume Change	ASTIMI CILET	350,420,480 us	atāl daya	Yes	No				
5.4.2.2	Restrained Shrinkage	AFTCT-RAA	orack free	at 150 cays	Yes	Ma				
5.4.2.3	Restrained Shrimkage	XXX9T CT-RXX	e<80%f′	at 7 cava	Yes	Ms			Dual irrigitest is currently under consideration as an AASHTO Provisional Teat Mathod	
5.4.2.4	Propability of Cracking	Assensiviti	5. 20. 30%	ai isecTes	Yes	No.				
Commerciary	Car ordy (CD	~	*	~	Nb	Y≅			Variation control ab with mixture proportion poservation or F Factor and Ponosity Measures	
6.5 Durability o	of Hydrated Cement Paste for Fre	eze-Thaw Durability								
5.5.1.1	Water to Cerrent Your Ratio	~	0.45	~	Yes	Yes	CrooseEthir 65.11 or		or\$.5.2.1	
5.51.7	Pein Ar Cortent	AASHTOT 152, 1135, TP 115	5 to 5	拉	Yŝi	Yei		C-poie		
5.5.1.3	Pein Ar Content/SAM	A45FT0T152.T135.TP115	2.48 AT; SAM 5.0.2	15. pg 1	Yes	Yes		or yore		
5.5.2.1	Time of Chitical Saturation	Bucket Test: Specification	30	Yeari	Yes	Ma	Note1	Note I	Variation control ed with mixture proportion poservation or F Factor and Porovity Measures	
5.5.3.1	Deloing Salit Damage	~	356	SCM	Yes	Ysi	Crop48018		We calcium or magnesium choride used	
5.5.3.1	Deiding Salit Damage	ASS M CT-R-44	*	Topica Treatment	Yes	Yes			We captumer magnesium cherice used, use specified sealers	
5.5.A.1	Calcium Oxyon price Limit	Test sent to AASHTO	< 0.15g €: 00t/)	ig state	Yes	No			We caplum or magnesium choribe luses	
6.6 Transport P	roperties									
5.51.1	Water to Cerrent Yous Ratio	~	s 0.45 or s 0.50	*	Yes	Y≌			The new lines maximum eater to dementificular stip is selected pales on freeze-thearconditions.	
5.51.2	Formation Factor	Tabel	2 900 pr 2 1000	~	Yes	Yes	C-page)- y ()-e	Based on freeze-thaik conditions. Other of teria could be selected	
5.5.2.1	lonic Penetration, F Factor	Appendik (IZ	25at 30	ryear	Yes. F	1.0% ನ			Determined using guitance provides in Assentia XZ.	
6.7 Aggregate Stability										
5.71	D Granking	A4 9-TO T 1 91. AST MIC 1946	4	~	Yes	No.				
5.7.2	Aka 'Aggregate Reactivity	A4 SI-TO PP SS	4	~	Yes	No				
6.8 Workability	5.8 Workability									
5.5.1	Bax Test	Addenok/B	4 6.25 *** . < 30%	5. f. V5'5		No				
583	Mbe file V-Kally Test	Asser six XII	15-30 *** 541 *56	it seesses		Nb				
Note 1: 0-55	ie Etrer 5.5.1.1 or 5.5.2.1									
Note 2: Choo	ie et er 6.5.1.2.6.5.1.3. or 6.5.2.1									

In Short

- Low w/cm ratio consider 0.4 target
- Adequate entrained air 5% to 8% w/5% min in place
- SCMs
 - > 20-25% class F fly ash
 - > 30-35% class C fly ash
 - Combination 20% slag and 20% C fly ash
- Well graded aggregates
- Use chemicals appropriately
 - > Salts
 - Penetrating sealers

http://www.intrans.iastate.edu/research/documents/researchreports/2016 joint deterioration in pvmts guide.pdf http://www.cptechcenter.org/technical-library/documents/Joint-Performance-Guide.pdf

http://www.cproadmap.org/publications/MAPbriefJune2015.pdf http://www.cproadmap.org/publications/MapbriefJune2014.pdf

www.cproadmap.org

June 2015 ROAD MAPTRACK 7

PROJECT TITLE
Pavement Joint Deterioration:
Recent Findings to Reduce the
Potential for Damage

TECHNICAL WRITERS Jason Weiss Yaghoob Farnam

EDITOR

SPONSOR

MORE INFORMATION Jason Weiss Purdue University 765-412-8358

The Long-Term Plan for Concrete Pavement Research and Technology (CP Road Map) is a national research plan developed and jointly implemented by the concrete pavement stakeholder community. Publications and other support services are provided by the Operations Support Group and funded by

Moving Advancements into Practice (MAP) Briefs describe innovative research and can promising technologies the promise provides information paving practices. The June 2015 MAP Brief provides information relevant to Track 7 of the CP Road Mays. 7 Concrete Paverment Maintenance and Preservation. This MAP Brief is available at www.cproadmap.org/ publications/MAP brief June2015.

"Moving Advancements into Practice"

MAP Brief June 2015

Describing promising technologies that can be used now to enhance concrete paving practices

Concrete Pavement Joint Deterioration: Recent Findings to Reduce the Potential for Damage

Introduction

While many concrete pavements provide excellent long-term performance, some concrete pavements have exhibited premature deterioration primarily at joints and saw-cuts (Figure 1). This joint deterioration is problematic because it compromises the performance and service life of an otherwise healthy concrete pavement. Repairing these joints can be expensive, and these repairs are disruptive to the travelling public.

It is commonly observed that the joints that frequently exhibit this damage contain standing fluid. These joints can develop two main types of deterioration: I) reacking parallel to the joint, resulting in 1/8 to 1/2 inch flakes of concrete being removed from the joint (green oval in Figure 2) or 2) spalling that begins with a hollowed out region at the bottom of the saw cut (a "soft zone" shown as a red circle at in Figure 2) resulting in a crack to the surface of parement that is typically four to six inches from the edge of the

This MAP brief provides a short update of recent research findings related to joint deterioration. It is a work in progress and is not intended to be a comprehensive review of the entire problem, as previous reports have been developed discussing damage at joints [1, 2, 3, 4, 5, 6].

Figure 2 shows a construction joint typical of that used by numerous Departments of Transportation (Figure 2). The joint is created by cutting the pavement (the depth of the saw cut is approximately 1/3 the depth of the pavement) shortly after the concrete is placed. The saw cut is placed when the concrete is mature enough to avoid raveling but not so mature that the stresses have built up to cause random cracking before or due to the saw cutting 7/1.

The intention of this saw cut is to provide stress relief, which can allow cracks to form at the saw cut locations. However, these cracks do not always occur. After several days (to weeks), the saw cut is saw cut again, widening the cut to provide a notch at the top of the joint for the placement of joint sealant. This second cut also allows minor raveling to be removed and attempts to provide a more uniform joint width since some of the opening has already occurred. The joints are then cleamed and dried prior to placement of an optional non-absorptive backer rod. The joint sealant is then blaced. If ideal

Figure 1: Typical examples of joint deterioration of concrete pavements in In

Zoom Out

CPROAD MAP

June 2014 ROAD MAPTRACK 6

PROJECTTITLE
Constructing Concrete
Pavements with Durable Joints

TECHNICAL WRITER
Peter Taylor
National Concrete Pavement
Technology Contor

EDITOR Sabrina Shields-C

SPONSOR Federal Highway Administration

MORE INFORMATION Peter Taylor National Concrete Pavement Technology Center ptaylor@iastate.edu 515-294-8103

The Long-Term Plan for Concrete Pavement Research and Technology (CP Road Map) is a national research plan developed and jointly implemented by the concrete pavement stakeholder community. Publications and other support services are provided by the Operations Support Group and funded by TFP-6(208).

Practice (MAP) Briefs describe innovative research and promising technologies that can be used now to enhance concret paving practices. The June 2014 MAP Brief provides information relevant to Track of the CP Road Map: Innovative Concrete Pavement Joint Design, Material and Construction.

This MAP Brief is available at www.cproadmap.org/ publications/MAPbriefJune2014. pdf.

"Moving Advancements into Practice"

MAP Brief June 2014

Describing promising technologies that can be used now to enhance concrete paving practices

Constructing Concrete Pavements with Durable Joints

Introduction

Premature deterioration of concrete pavement at joints has been reported in a number of locations in northern states. The pavements affected include state highways, city and county streets, and parking lots.

Not all roadways exhibit joint deterioration; however, the problem is common enough that a focused research effort was implemented to better understand the mechanisms for joint deterioration and to develop guidelines for prevention and repair.

This document describes some of the factors that may be contributing to the occurrence of joint deterioration and provides guidelines on how the risks may be reduced.

Occurrence

Joint deterioration is most commonly observed in city and county streets, both in longitudinal and transverse joints (Figure 1), though local variations are reported.

igure 1:Typical distress in a city street

The distress is most common in pavements ranging in age from 5 to 15 years old. In some cases, the distress is initially observed as shadowing (Figure 2); later, the joint exhibits significant loss of material.

Joint distress is commonly observed in the form of thin flakes in the paste. A variation in the distress is the observation of cracks that form about an inch from and parallel to the sawn face and are repeated away from

The depth of this distress is about the same as the saw cut (Figure 3). The pieces that come out tend to be sound rather than flakey. In both cases, the exposed face leaves aggregate particles exposed, indicating that the mechanisms are affecting the paste rather than the averseate.

Figure 2: Shadowing

Thanks for your time

www.cptechcenter.org

