Allocation of Road Repair Costs to Multiple Users of Posted Roads

Using ESAL method

Introduction

- Pavement damage depends on weight distribution.
- Weight distribution depends on:
- Number of axles
- Weight on each axle
- Spacing of axles

ESAL Concept Developed

- AASHTO developed a method to convert various truck axles configurations \& weights to one standard
- Standard = ESAL (Eqquivalent Single $\underline{A x l e}$ Load) One ESAL is equivalent to an $18,000 \mathrm{lb}$ weight on a single axle with dual tires.

ESALs Determined for Specific Axle Types \& Weights

- AASHTO developed equivalency factors based on relative damage caused by an axle type \& weight compared to the standard ESAL
- Examples:
- Single axle (18,000 lbs)= 1.0 ESALs
- Single axle ($12,000 \mathrm{lbs}$) $=0.23$ ESALs

- Tandem axle $(24,000 \mathrm{lb})=0.32$ ESALs
- Tandem axle (34,000 lbs)=1.11 ESALs

ESALs Determined for Specific Trucks

- Most trucks contain a combination of axle types \& loads
, ESALs for entire truck = sum of ESALs for each axle

Simplified ESAL Determination

- Many DOT's have developed average ESAL factors for each truck class based on measurements of trucks throughout state
- Eliminates need to weigh each truck when doing pavement analysis
- PennDOT's average ESAL Factors provided in Publication 242

PennDOT’S Truck ESAL Factors (Publication 242)

TABLE 7.1 Average Initial Truck Factors (ESALs/Truck) by Vehicle Class

VEHICLE CLASSIFICATION			ESAL's	
Line \# in DARWin $\mathbf{3 . 0 1}$	FHWA Class	Corresponding Department Description	Rigid	Flexible
$\mathbf{1}$	1	Motorcycle	0^{*}	0^{*}
$\mathbf{2}$	2	Passenger Cars	0^{*}	0^{*}
$\mathbf{3}$	3	SUV/Pick-up	0^{*}	0^{*}
$\mathbf{4}$	4	BUS Factor	0.24	0.24
$\mathbf{5}$	5	2-axle, 6-tire	0.24	0.24
$\mathbf{6}$	6	3-axle, single unit	1.15	0.82
$\mathbf{7}$	7	4-axle, single unit	7.00	4.50
$\mathbf{8}$	8	3-axle, single trailer	0.60	0.44
$\mathbf{9}$	9	3-axle, multiple axle trailer	1.59	1.00
$\mathbf{1 0}$	10	6-axle, single trailer	1.42	0.75
$\mathbf{1 1}$	11	5-axle, multiple trailer	2.40	2.33
$\mathbf{1 2}$	12	6-axle, multiple trailer	1.42	1.28
$\mathbf{1 3}$	13	7-axle, multiple trailer	1.42	1.28

*Note: Because motorcycles, passenger cars, and SUV/Pick-up trucks do not significantly contribute to the 18 -kip ESALs they are considered negligible and an ESAL/truck factor of 0 is assigned. However, the percent of the ADT in this class must be input into DARWin because the Total Percentage must equal 100.00%. If there are any vehicles that are not large enough to be classified in any of the above classes, they should be grouped with the motorcycle percentage.

Example PennDOT ESAL Factors

Class 7 (Triaxle)

- 4.50 ESALs

Class 9 (Tractor Trailer)

- 1.00 ESALs

PennDOT Procedure to Allocate Repair Costs to Multiple Users

- Previous Method- Publication 23
- Costs allocated based on \% tonnage hauled by each user
- Revised Method-Recently Developed
- Costs allocated based on \% ESALs by each user
- Spring thaw factor

Example- ESAL Method

COMPANY	TRUCK TYPE	NUMBER OF TRUCKS	ESAL FACTOR	ESALS	PERCENT OF ALLOCATION
A	4-AXLE SINGLE UNIT	65	4.5	292.5	67.66\%
	3 AXLE-MULTIPLE AXLE TRAILER	36	1	36	
B	3 AXLE-SINGLE UNIT	55	0.82	45.1	9.29\%
C	5-AXLE MULTIPLE TRAILER	40	2.33	93.2	23.06\%
	6-AXLE SINGLE TRAILER	25	0.75	18.75	
			TOTAL $=$	485.55	100.00\%

Damage During Spring Thaw

Pavement damage from trucks is accelerated during Spring thaw
PennDOT developed refined procedure to account for additional damage during Spring thaw period

- Independent study of pavement found damage during Spring thaw is approximately 2 times the damage during the rest of the year

ESAL Method Modified to Account For Spring Thaw Damage

- ESALs applied during period of Spring thaw multiplied by damage factor to get equivalent ESALs

COMPANY	HAULING DATA	
$\times \mathbf{y y y}$	NUMBER OF TRUCKS (A)	28
	TRUCKS DURING SPRING THAW (B)	8
	TRUCKS OUTSIDE SPRING THAW C=(A-B)	20
	ESAL FACTOR (D)	4.5
	TOTAL EQUIVALENT ESALS (C+(2*B))*D	162

